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ABSTRACT
A 3D forest monitoring system, called FORSAT (a satellite very high
resolution image processing platform for forest assessment), was
developed for the extraction of 3D geometric forest information from
very high resolution (VHR) satellite imagery and the automatic 3D
change detection. FORSAT is composed of two complementary tasks: (1)
the geometric and radiometric processing of satellite optical imagery
and digital surface model (DSM) reconstruction by using a precise and
robust image matching approach specially designed for VHR satellite
imagery, (2) 3D surface comparison for change detection. It allows the
users to import DSMs, align them using an advanced 3D surface
matching approach and calculate the 3D differences and volume
changes (together with precision values) between epochs. FORSAT is a
single source and flexible forest information solution, allowing expert
and non-expert remote sensing users to monitor forests in three and
four (time) dimensions. The geometric resolution and thematic content
of VHR optical imagery are sufficient for many forest information needs
such as deforestation, clear-cut and fire severity mapping. The capacity
and benefits of FORSAT, as a forest information system contributing to
the sustainable forest management, have been tested and validated in
case studies located in Austria, Switzerland and Spain.
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1. Introduction

Different technological solutions are available for multi-scale and multi-temporal acquisitions of for-
est data. The choice of the data collection method is the result of a balance between economy and
technology. Reference literature shows that terrestrial laser scanning (TLS) is used for rapid and
detailed measurement of individual tree stems (Kelbe et al. 2017; Liu et al. 2017), in spite of the
fact that in such cases the canopy surface cannot be modelled comprehensively.

Advancements in unmanned aerial systems (UASs) open new possibilities in forest mapping, on
the other hand, both the spatial and temporal resolutions of UAS imagery better suit local-scale
investigations (Lisein et al. 2013; Jensen and Mathews 2016) with area size at hectare level. Airborne
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LiDAR is widely used for the reconstruction of canopy height models (CHMs) and individual tree
crowns (Wang et al. 2016; Wu et al. 2016; Xiao et al. 2016) for larger areas. The performance of
image-based 3D tree modelling was compared to data derived from airborne LiDAR and it was
found that when the shape of canopy is required the image-based methods may deliver the better
results (Waser et al. 2007; Baltsavias et al. 2008; Waser et al. 2008a). While the image matcher gen-
erates an envelope of the canopy the Laser will penetrate the tree and produces reflections from stem
and branches, thus leading to a mismodelled canopy surface. The flying altitude, scanning angle,
spatial resolution, system and platform type are the main factors affecting the final data quality (Ker-
änen, Maltamo, and Packalen 2016). LiDAR data post-processing is in many cases complex, for
instance, for the presence of spikes in surface models (Khosravipour, Skidmore, and Isenburg
2016; Vauhkonen et al. 2016). Separation of true measurements from solar noise is a crucial point
in the processing of high altitude single photon LiDAR systems (Wastlund et al. 2018). Ground pen-
etration property of the signal, topological errors, operational and logistical restrictions, and
especially the costs are critical points, too. On the operational aspect, data management has become
a bottleneck in large scale laser scanning operations (Vo, Laefer, and Bertolotto 2016).

Moving to satellite platforms, TanDEM-X elevation models are used to generate CHMs of wider
areas. Anyway, X-band interferometers require external terrain data, which leads to additional costs
and efforts (Schlund et al. 2016). The X-band radar has a certain penetration depth (Persson and
Fransson 2016), which may cause local underestimation of the canopy surface. Finally, time series
of ESA Sentinel-2 and Landsat imagery are used to monitor global forest cover and change (Feng
et al. 2016; Hermosilla et al. 2016), but not at the fine detail level.

Forest monitoring and information gathering are traditionally done through expensive and time
consuming field studies in combination with terrestrial and aerial surveys with optical and LiDAR
sensors. This is followed by digital data analysis in image processing suites and geographic infor-
mation systems (GIS) to derive basic parameters such as area coverage, species, height, volume,
health, damage, change, deforestation, etc. Subsequently, the map and statistical data are used for
management decisions, implementations of regulations or simply for industry operations. The
range of requirements, given by forest industries and management authorities of the forest sector,
calls for more direct remote sensing capacities and technologies, that can offer a high level of reliable
information in a reasonable time, at fine resolution and reduced costs. Focusing on regional and
national scales of application, the very high resolution (VHR) stereoscopic acquisitions from satellite
platforms offer less expensive, faster and more agile remote sensing capacities than the terrestrial and
aerial ones, thereby providing a complementary, single source for orthoimages and ground elevation
information. In addition, satellite systems offer other advantages to aerial acquisitions, such as no
overflight permissions needed, a much greater ground coverage capacity, the availability of more
spectral bands and frequent repetition on a certain area of interest.

As the infrastructure investments (i.e. satellite and ground segments) have been made, the invest-
ments in the development of exploitation technologies (i.e. algorithms and processing chains), which
can put the new earth observation capacities to work, are following behind. Progress is predomi-
nantly technology driven (Gruen 2008). Here, we have identified a research opportunity for the for-
estry sector, and executed a project to develop a new methodology and associated algorithms and
software specifically designed for forest monitoring and management tasks. The project is entitled
‘a satellite VHR image processing platform for forest assessment’, namely FORSAT, which is a
research and development project co-funded by Eurostars through the national funding authorities
and the European Commission. Eurostars is a joint programme between EUREKA and the European
Commission to support international innovative projects led by research and development – per-
forming small – and medium-sized enterprises. The aim of the FORSAT project is to raise the cur-
rent technological level of aerial photogrammetry and LiDAR to a satellite-based monitoring
capacity for forest cover mapping applications. More specifically, it intends to transfer the existing
precise processing capabilities of airborne techniques to VHR optical, stereographic satellite data,
thereby providing a single-source geometric forest information solution.
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Forest mapping and modelling is performed with remote sensing data and techniques at several
levels of detail, such as TLS (Hosoi, Nakai, and Omasa 2009; Zheng and Moskal 2012), UAS (Dash
et al. 2017; Sankey et al. 2017), UAS photogrammetry (Fankhauser, Strigul, and Gatziolis 2018),
aerial photogrammetry (Baltsavias et al. 2008; Waser et al. 2008b), satellite SAR (Baron and Erasmi
2017; Martone et al. 2018), multispectral (Castillo et al. 2017; Chen et al. 2017), and VHR optical
imagery (Meddens et al. 2018; Wagner et al. 2018), and satellite InSAR (Sadeghi et al. 2018). The
VHR optical imagery is the viable option among them due to its balance between the coverage
and resolution, cost and availability. The photogrammetric image matching methods have proved
their capabilities against to LiDAR counterparts as shown in several airborne (Waser et al. 2007; Balt-
savias et al. 2008; Waser et al. 2008a; Kukkonen, Maltamo, and Packalen 2017; Jayathunga, Owari,
and Tsuyuki 2018; Navarro et al. 2018; White et al. 2018) and spaceborne comparison studies (Zhang
and Gruen 2006; Gong and Fritsch 2018; Pearse et al. 2018). In FORSAT, input pipeline of the VHR
optical imagery is combined with an advanced image matching method. The image matcher has the
advantages of geometrically constrained multi-image matching, combination of area-based and fea-
ture-based matching, coarse-to-fine hierarchical matching and dense image matching.

Forest change is inevitable. Forest height changes (Stepper, Straub, and Pretzsch 2015; Tian et al.
2017) and area changes (Desclée, Bogaert, and Defourny 2006; Charru et al. 2017; Senf et al. 2017;
Zhu 2017; Reiche et al. 2018) are well studied. In contrast, 3D changes are less studied (Tran, Ressl,
and Pfeifer 2018). Volume computation is performed for timber and biomass estimation (Rahlf et al.
2014; Magnussen, Nord-Larsen, and Riis-Nielsen 2018; Puliti et al. 2018), but not for change analysis
(Qin, Tian, and Reinartz 2016). In FORSAT, a fully 3D surface matching method is used to detect
forest changes in terms of deforestation and regeneration. The surface matcher can compute the
changes in height (1D), area (2D) and volume (3D) units. Furthermore, a theoretical precision esti-
mation is derived and associated to each volume value.

The scientific merit of the proposed system is to have tailored the state-of-the-art 3D surface
modelling workflow to the forest domain and to 3D change analysis. Indeed one tool combines
advanced image and surface matching algorithms and allows experts and non-experts users to
model the forest surfaces with detail, align at sub-pixel accuracy more models of the same areas
and conduct accurate volumetric analysis. The FORSAT methodology, described in the next section,
enables high resolution (HR) thematic mapping of forest areas along with the use of 3D canopy
model, thereby allowing the derivation of forest volumes. Based on new image acquisitions as
well as on historical data, the system allows automatic change detection of forest/non-forest areas
along with change modelling in forest volumes. The FORSAT functionalities, accuracies, capacities
and applicability to specified forest segments were tested by executing three application case studies
located in Austria, Switzerland and Spain. The results achieved in the test cases are reported in the
third section. Advantages and disadvantages of the proposed method are discussed in the fourth sec-
tion, followed by final conclusions.

2. Technical approach

The workflow of FORSAT is graphically represented in Figure 1. The overall architecture comprises
four modules: pre-processing, geo-referencing, digital surface model (DSM) generation and 3D com-
parison. Each module is running independently but is also tightly coupled in an object-oriented soft-
ware framework.

The same workflow could be seen as a combination of two complementary tasks. The first task is
the geometric and radiometric processing of satellite imagery and 2D/3D information extraction,
whose steps are radiometric pre-processing, image and ground point measurement, improvement
of geometric sensor orientation, quasi-epipolar image generation for stereo measurements, image
matching for DSM extraction, orthorectification and orthoimage generation, and 3D point measure-
ments in single images using monoplotting, in stereo images as well as in image triplets (Gruen, Poli,
and Zhang 2004; Poli 2005; Zhang 2005; Zhang and Gruen 2006). The tool supports most of the
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VHR optical imagery commonly used for civil applications, active and non-active (e.g. for historical
analysis) such as IKONOS, OrbView-3, SPOT-5 HRS, SPOT-5 HRG, QuickBird, GeoEye-1/2,
WorldView-1/2/3, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the
future.

The second task is committed to 3D surface co-registration, comparison and change detection. It
allows the users to read DSMs and digital terrain models (DTMs), co-register them using an
advanced 3D surface matching technique (Akca 2007) and calculate the 3D differences, in the
form of volume changes (in m3 units).

The origins of the orientation, image matching, and surface matching and comparison algorithms
date back to the academic works performed at the group of Photogrammetry and Remote Sensing at
ETH Zurich (Poli 2005; Zhang 2005; Akca 2007). Later on, these algorithms were commercialised as
SAT-PP (SATellite image Precision Processing) and LS3D (Least Squares 3D surface matching) soft-
ware packages by 4DiXplorer AG (www.4dixplorer.com), an ETH spin-off company located in Zur-
ich. FORSAT is an integration, adaptation and improvement of these software packages specifically
for the forestry applications.

The Ames stereo pipeline (Broxton and Edwards 2008; Moratto et al. 2010; Fassett 2016), MicMac
(Pierrot-Deseilligny and Paparoditis 2006; Rupnik, Daakir, and Pierrot-Deseilligny 2017; Rupnik,
Pierrot-Deseilligny, and Delorme 2018), GRAPHOS (Gonzalez-Aguilera et al. 2018) and COLMAP
(Schönberger et al. 2016; Schönberger and Frahm 2016) are the general-purpose image matching
software which are available in open source. SURE (Rothermel et al. 2012) and RSP (Qin 2016)
are the academic examples. Correlator3D (SimActive), Pix4Dmapper (Pix4D), PhotoScan (Agisoft)
and ContextCapture (Acute3D) are the commercial examples for image matching. More alternatives
in orientation (Remondino et al. 2012), image matching (Gruen 2012; Remondino et al. 2014), sur-
face matching (Akca 2010; Shean et al. 2016) and visualisation (Manferdini and Remondino 2010)
do exist.

There is not a single reason which makes FORSAT more suitable over the alternatives. Rather, it
has a collection of algorithmic capabilities which altogether constitute an advanced solution for
deforestation analysis tasks. See the details in the fourth section.

The upcoming sub-sections explain the basic components of FORSAT system, i.e. metadata
analysis, pre-processing, image pyramid generation, geo-referencing, DSM generation, co-

Figure 1. Main components of the FORSAT processing chain.
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registration, comparison and change analysis, and precision estimation. More information can be
found in Poli (2005), Zhang (2005) and Akca (2007).

2.1. Metadata analysis

The VHR satellite images include metadata information provided by the vendors in non-standard
formats. Before processing the images, preliminary operations on the metadata are performed in
order to prepare the input data. These pre-processing operations include both the analysis of the
optical sensor (i.e. internal calibration) and image acquisition characteristics (i.e. incidence angles,
sun illumination, etc.) for a better understanding of the image content, and the extraction of the
required information for the radiometric improvement (Poli 2007). For the above-mentioned sen-
sors, the metadata reading operation was successfully performed, and a strategy for the extension
to other metadata formats was planned.

2.2. Image radiometric pre-processing

The performance of the image matching and feature extraction procedures depends on the quality
and quantity of radiometric information being included in imagery. Compared to the traditional
scanned 8-bit/pixel images, digital imagery from linear array sensors has better radiometric perform-
ance e.g. higher dynamic range and better signal-to-noise ratio. Most of the linear array sensors have
the ability to provide high quality digital images. However, some radiometric problems still have to
be considered: poor image contrast, image blur problems, image noise, and radiometric problems
caused by the variations in the sensor view angle, the sun angle, shadowing, and the seasonal and
the atmospheric conditions. These problems are usually beyond the control of the users, but their
effects can be reduced by applying appropriate pre-processing methods (Zhang 2005).

Gamma correction, contrast enhancement, histogram equalisation are trivial applications and can
be found in many standard image processing software. The pre-processing radiometric approach in
FORSAT uses the Wallis filter (Wallis 1976), which forces the mean and standard deviation of an
image to given target values. Wallis filter is successful in noise reduction meanwhile sharpening
the edges and preserving small details (Baltsavias, Pateraki, and Zhang 2001; Pateraki and Baltsavias
2002; Pateraki 2005).

2.3. Image pyramids

An image pyramid is a multi-resolution representation of the original image. It is used in many of the
modern matching algorithms to speed-up the image matching computation while at the same time
keeping the finest spatial resolution for the final DSM output. With a coarse-to-fine hierarchical
strategy based on image pyramid representation, the matches obtained at a coarse resolution are
used to guide and limit the search space for the matching of finer-resolution features. In this strategy,
the usual way is to start matching at a low resolution pyramid level, where the influence of image
noise is reduced and coarse approximate values are sufficient to stay within the pull-in range of
the matching procedure. In addition, in the low resolution images, the regions of interest for corre-
spondence analysis in levels of higher resolution can be found at low cost because irrelevant details
are no longer disturbing there. The computations are usually performed successively on each level of
the hierarchy using the results of the higher level as approximate information (Ackermann and Hahn
1991; Zhang and Gruen 2006).

In FORSAT, the image pyramids are generated after the radiometric pre-processing step, starting
from the original resolution images level 0, until level 3. Each pyramid level is generated by multi-
plying a 7 × 7 pixel kernel and reduces the resolution by factor 3 (Figure 2). This generating kernel
size is selected due to a better approximation of the ideal Gaussian kernel (Zhang 2005). There are
totally four levels, including base level 0.
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2.4. Image geo-referencing

The rational function model (RFM), which is a well-known non-rigorous (generalised) orientation
method based on the rational polynomial functions (Kratky 1989; Toutin 2004; Kim and Dowman
2006; Poli and Toutin 2012), is used in FORSAT for geo-referencing. An RFM is the ratio of two
polynomials derived from the rigorous sensor model and the corresponding terrain information,
which does not explicitly reveal the sensor model parameters. The rational polynomials coefficients
(RPCs), available as metadata information, are computed by image vendors by a least squares adjust-
ment with the use of the rigorous sensor model and virtual control points (Dial and Grodecki 2002;
Tao and Hu 2001).

In FORSAT, the geo-positioning accuracy of the RFM can be improved with the use of few
ground control points (GCPs) (Fraser, Baltsavias, and Gruen 2002; Grodecki and Dial 2003;
Zhang and Gruen 2006). This is achieved through a kind of RPC block adjustment that can accom-
modate stereo and triplet satellite images. It refines the orientation information if the quality of the
RPCs is not given at a sufficient level. The distribution and positional accuracy of the GCPs play an
essential role here. The required number of GCPs depends on the size and topography of the project
area. Although just one GCP is theoretically enough for a constant correction, we recommend to use
at least three points. However, it is always a good idea to use a few more for the sake of reliability and
for independent quality check, of course, if accessible.

Figure 2. Four image pyramid levels in FORSAT. The level size is defined according to 33-n × 33-n formula where n stands for the
level number.
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2.5. DSM generation

The automated DSM generation is performed using a modified version of the multiple primitives
multi-image matching (MPIM) method (Zhang and Gruen 2004; Zhang 2005; Zhang and Gruen
2006).

It matches a dense pattern of features with an appropriate matching strategy, making use of all
available and explicit knowledge, concerning sensor model, network structure, image content and
geometrical constraints such as the epipolar geometry constraint (Zhang 2005; Zhang et al. 2006;
Baltsavias et al. 2007).

The matching approach combines the area-based and the feature-based matching methods that
are run in parallel through all the image pyramid levels in the MPIM module.

As mentioned above, a coarse-to-fine hierarchical matching strategy is followed. Starting from the
low-density features on the lowest resolution level of image pyramid, the matching procedure pro-
gressively approaches the original resolution images. The triangulated irregular network (TIN) is
reconstructed from the matched features on each level of the pyramid using the Delaunay triangu-
lation method (Tarvydas 1983; Tsai 1993), which in turn is used in the subsequent pyramid level
for the approximations and adaptively computation of the matching parameters. Finally, least
squares matching methods are used to achieve more precise matches and to identify false matches
(Figure 3; Zhang 2005).

Since the matching procedures are based on the concept of multi-image matching (two-fold and
three-fold images like Pléiades triplets) guided from the object space, any number of images could be
potentially processed simultaneously for DSM generation.

2.6. 3D Co-registration, comparison and change analysis

The co-registration of digital elevation models (DEMs) is crucially needed wherever spatially related
datasets can be described as digital surfaces and have to be compared to each other.

There have been some studies on the co-registration of DEMs for control information and
for change detection tasks. This work is known as DEM matching (Ebner and Strunz 1988;

Figure 3. Homologous points of a stereo image matching case of FORSAT. The very dense green points are successfully matched
points, the yellow points are still acceptable but with low reliability, and the red points are the outliers to be excluded. Note that the
colours are grayscale in the print version.
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Rosenholm and Torlegard 1988; Mitchell and Chadwick 1999; Beyer, Alexandrov, and Moratto
2014; Sedaghat and Naeini 2018) and is based on the estimation of the transformation par-
ameters between two DEM patches, by minimising the sum of the squares of the elevation
differences (1D along the z-axes). Nevertheless, one drawback of the approach is that the 1D
elevation differences may not truly represent the surface-to-surface distance, in case of compari-
sons between landscape models in complex scenarios. Assuming a reference DEM and a test
DEM to be checked, the above-mentioned approach based on elevation differences is subopti-
mal (Gruen, Poli, and Zhang 2004), since:

a) at surface discontinuities (i.e. steps) interpolation errors may lead to large height differences
although the measurements are correct (Figure 4(a)), and

b) if the reference frames of the two DEMs are not perfectly aligned (e.g. shifts and tilts), then large
differences occur, especially at discontinuities, although the heights may be correct in the single
surfaces (Figure 4(b)).

In FORSAT, these shortcomings are overcome by employing an advanced approach
where the shortest 3D (Euclidean) distance, instead of the elevation difference, between each
reference point and the produced DEM is used (Gruen and Akca 2005; Akca 2010; Akca
et al. 2010).

FORSAT uses the least squares 3D surface matching (LS3D) method (Gruen and Akca 2005; Akca
2007; Akca and Gruen 2007) that favourably responds to the following aspects:

1) co-registration capability with higher order spatial transformation models,
2) co-registration and comparison of full 3D surfaces (as opposed to 2.5D),
3) a rigorous mathematical formulation for high accuracy and quality control demands,
4) a flexible model for further algorithmic extensions,
5) mechanisms and statistical tools for internal quality control,
6) the capability of datasets matching at different qualities and resolutions.

The LS3D method is a rigorous algorithm for the matching of overlapping 3D surfaces and/
or point clouds. It estimates the transformation parameters of one or more fully 3D surfaces
with respect to a template surface, using the generalised Gauss–Markov model, minimising
the sum of the squares of the Euclidean distances between the surfaces. This formulation
gives the opportunity to match arbitrarily oriented 3D surfaces, without using explicit tie points.
Details of the procedure can be found in Akca and Gruen (2005, 2007), together with several
applications ranging from 3D modelling (Akca et al. 2007) to geomorphology (Akca and Sey-
bold 2016).

Figure 4. The sub-optimality between 1D elevation difference Δz and the spatial distance d in case of (a) surface discontinuity and
(b) reference frame misalignment.
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In FORSAT, the workflow for 3D comparison and change analysis includes three main
steps. In the first step, the LS3D algorithm is run only one iteration, without applying any
3D transformation, in order to estimate the 3D spatial (Euclidean) distances between the
DSMs. This step is very important because it gives quantitative and precise information on
the initial (spatial) disagreement of the two datasets, which is caused by variant geo-referen-
cing accuracy of each data set and temporal changes that might have occurred between the
two epochs.

The second step is the surface co-registration. A full LS3D surface matching is performed to
estimate any translational, rotational and scale difference between the template (fixed) and
search (floating) DSMs. Then, the estimated 3D transformation parameters are applied to
the search DSM and the geo-referencing errors (shown hypothetically in Figure 4(b) are
eliminated.

The software provides statistical information that is helpful for in-depth analysis of the results: the
a-posteriori variance factor gives information about the overall agreement of both DSMs, while the
standard deviations of the estimated transformation parameters and the correlations between them-
selves give information concerning the stability of the system and the quality of the data content. In
the course of iterations, a simple weighting scheme adapted from the robust estimation methods is
used for error detection in correspondences (Gruen and Akca 2005; Akca 2010; Akca et al. 2010).
Every residual is tested against a threshold that is calculated as three times of the current a posteriori
standard deviation of the observations (sigma naught). In this way, the changed parts are excluded
from the parameter estimation. Because of the high redundancy of a typical data set, a certain num-
ber of missed outliers, i.e. Type-II (omission) errors, do not have a significant effect on the estimated
transformation parameters.

The third and final step of the 3D surface comparison is for analysis purposes. The LS3D is run
again without any 3D transformation calculation, in order to compute the 3D correspondences. The
3D correspondences are vectors showing the 3D spatial deviations (or changes) between the DSMs.
They are the actual change indices, and they assert the search DSM at every data point location of the
template DSM. This final step shows the temporal changes of the forest surface in the form of 3D
correspondence vectors.

In case of forest applications, any spatial deviation larger than ±3 m between the template
and the search DSMs is classified as a temporal change, while spatial deviations less than
±3 m are labelled as ‘no change’ class. This number is the mean a priori accuracy of the used
DSMs according to our internal tests. In fact, the mean DSM generation accuracy of the FOR-
SAT system is about 2–3 times of the ground sampling distance (GSD) of the used imagery
(Gruen, Poli, and Zhang 2004). Any spatial deviation larger than ±20 m is regarded as the
gross error, excluded from the computation, labelled as ‘no data’, but kept in the visualisations
(Figures 8, 15 and 21). These gross errors are generally due to image matching, triangulation
and reconstruction problems. Their percentage is small and usually about or below 1% as
seen in Figures 12, 18 and 24. When the change hypotheses are tested, two types of errors
can occur in the detection results. The gross errors, whose spatial deviations are less than
±20 m, are false positively accepted, which bring Type-I (commission) errors, although they
do not belong to change class in reality. On the other hand, temporal changes, whose spatial
deviations are just as ±3 m or less, are false negatively rejected, which bring Type-II (omission)
errors, although they belong to change class in reality. The selection of the threshold values as
less than or greater than ±20 and ±3 m will accordingly change the number of Type-I and Type-
II errors, respectively. These threshold values do not apply to all kind of forest types. They
should be tuned according to the application site. The selection of the threshold is also corre-
lated with the accuracy of the DSM (Qin, Tian, and Reinartz 2016).

The adopted change detection strategy is straightforward and practical. Further developments are
possible to improve the error handling capacity (Wheaton et al. 2010; Lague, Brodu, and Leroux
2013).
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2.7. Precision of 3D (volume) change numbers

FORSAT provides precision metrics of the estimated 3D volume change. The theoretical precision of
the volumetric change value is computed from the internal (a priori) data following the law of error
propagation.

Given that the volume V of any polygon with a 3D change is computed as

V = a
∑n
i=1

hi, (1)

where a is the area of the unit grid cell of the template DSM (2 × 2 = 4 m2, 4 × 4 = 16 m2 and 2 × 2 =
4 m2 in the Austrian, Swiss and Spanish test sites, respectively), hi are the height differences between
the template and search DSMs at every grid cell location within the polygon, n is the number of grid
cells coinciding in the change polygon. The theoretical precision mv of volume V is computed using
the law of error propagation.

m2
v =

∂V
∂a

[ ]2
m2

a +
∂V
∂h1

[ ]2
m2

h1 +
∂V
∂h2

[ ]2
m2

h2 + · · · + ∂V
∂hn

[ ]2
m2

hn. (2)

The a priori precision of the area of the unit grid cell ma is supposed to be errorless, therefore
ma = 0. The a priori precision of the height differences are assumed to be equal, that is:

m2
h1 = m2

h2 = · · · = m2
hn = m2

h. (3)

The value of mh can be computed as the root mean square error (RMSE) of the co-registration of
small surface patches of the DSMs over flat areas. It corresponds to the uncertainty of surface match
at the grid cell level. Then, Equation (2) becomes

m2
v = n a2 m2

h, (4)

m2
v = a A m2

h, (5)

mv =
�����
a A

√
mh, (6)

where A = na is the area of the change polygon. The theoretical precision (standard deviation) of
the volume values in Figures 13, 19 and 25 were computed using Equation (6). Relevant deri-
vations were given in Bagnardi, Gonzales, and Hooper (2016), Parente and Pepe (2018), Avian,
Kellerer-Pirklbauer, and Lieb (2018), Li et al. (2018), Scaioni et al. (2018) and Morino et al.
(2018).

2.8. FORSAT software

The above described functionality was implemented as the software suite FORSAT using C/C++
programming language. The software suite is not a monolithic system; every core module works
independently and is related to the others at the same time. The block diagram is given in Figure
5. The process starts with the metadata reading and internal format conversion. Radiometric
pre-processing and pyramid generation is performed for each scene individually. If a few
GCPs are available, geo-referencing accuracy can be improved by use of the RPC triangulation.
Quasi-epipolar images are generated and sent to the image matching module for DSM gener-
ation. DSMs of different dates (together with external LiDAR point clouds, if available) are
input to the co-registration module. Once they are accurately aligned, 3D comparison and
final change analysis steps are performed.
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3. Applications: test sites and validation

Applications and validation studies were carried out at three test sites located in Austria, Switzerland
and Spain (Figure 6), using VHR satellite imagery either ordered as a new acquisition or retrieved
from the archive. Pre-processing, DSM generation, co-registration and change analysis steps were
performed consecutively. Accuracy evaluation was carried out only in the Austrian test site since
the reference data was not available in the other test sites.

3.1. Forest damage caused by storms and pests in Salzburg (Austria)

Austria’s forests cover an area of around 40,000 km2, which is almost half the area of the whole
country. This is equivalent to more than one billion cubic metres of growing wood with rich biodi-
versity. The wet moderate climate of Austria, which varies throughout the country, underlies intense
influences from the mountainous regions and the presence of strong winds in the Austrian Alps.
These heavy wind gusts cause natural hazards which also influence the forest regions. Furthermore,

Figure 5. Block diagram of the functional modules of the FORSAT software.
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Austrian forests are endangered by bark beetles which damage forest stands and the economy. Long-
term projections indicate that the climate change will cause raising temperatures in Central Europe
and subsequently will trigger the spread of the bark beetles at higher altitudes (Bale et al. 2002).

The test site covers an area of 100 km². It is located in the Austrian Alps near Zell am See in the
province of Salzburg (Figure 6). With exception of the city of Zell am See in the South-East of the

Figure 6. The three test sites in Austria, Switzerland and Spain.

Figure 7. Historic LiDAR DSM of 2007 (a), and recent SPOT-6 DSM of 2013 (b).
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area of interest (AOI), the area is dominated by mountainous landscape with large forest areas. The
site was damaged by storms (since 2002) and bark beetles (since 2010). As a consequence affected
regions are characterised by forest clearings, which developed through the years 2002–2011.

A DSM, acquired using the airborne LiDAR scanner in 2007 and resampled to 2 m resolution was
provided by the Department of Forest to be used as the historical reference data (Figure 7(a)). A new
Pléiades stereo image acquisition task was ordered to be used as the recent data. Although several
attempts have been made between July and August 2014, cloud–free images could not be acquired.
Therefore, an archived SPOT-6 triplet from October 2013 with a resolution of 1.5 m was used as
recent data. The imagery was processed using the FORSAT software, and a DSM with a resolution
of 2 m was generated (Figure 7(b)).

The historic and actual DSMs were automatically co-registered and compared for 3D change
detection. The red areas in Figure 8 show the decrease and the green areas show the increase in
height. In Figure 9, an area of deforestation is clearly visible in the SPOT-6 true colour composite
image and in the corresponding historic LiDAR and recent SPOT-6 DSMs. Due to the unfavourable
acquisition time of the SPOT-6 stereo pair, large areas of the test site are covered with mountain sha-
dows because of the low sun angle which leads to matching problems during the DSM processing
and subsequently also contaminates the change results (Figure 10). This is not a specific problem
to the FORSAT, rather it is a general problem of image matching algorithms using the satellite
images. Selection of a better image acquisition time or employing a shadow elimination algorithm
(Mostafa 2017) can resolve the problem.

The forest development plan (Figure 11) of the test area is obtained from SAGIS (Salzburger Geo-
graphisches Informationssystem) and overlaid with the change detection results so that the spatial
changes in specific forest types can be identified. The protection forest (class 101) and commercial
timberland (class 104) areas dominate in the test site with areal percentages of 54.3% and 38.5%,
respectively (Table 1). All forest classes have a similar trend in terms of change in coverage
(Figure 12). For example, 82.8% of the entire commercial timberland coverage does not show any

Figure 8. Result of the change analysis. The legend at the lower right corner shows the height variations between 2007 and 2013.
The red colour shows the decrease of height and the green colour shows the increase of height. The colour scale is also for the
Figures 9 and 10. Note that the colours are grayscale in the print version.
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Figure 9. Enlarged view of the top-left (small) rectangle in Figure 8. Deforestation detected in the change analysis (a), SPOT-6 true
colour view of the same area (b), historic LiDAR DSM (c), and recent SPOT-6 DSM (d).

Figure 10. Enlarged view of the middle-right (large) rectangle in Figure 8. Erroneous image matching causes errors in the change
detection (a), mountain shadows visible on the SPOT-6 orthoimage of the same area (b).
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Figure 11. The forest development plan of the Salzburg test site. The background is the SPOT-6 false colour composite image.

Table 1. Percentage of the forest development plan classes in the Salzburg test site (Austria).

Class no Land cover name Area percentage

101 Protection forest 54.3%
102 Social welfare forest 7.2%
103 Recreation function of forest 0.1%
104 Commercial timberland 38.5%

Figure 12. Areal change of each forest class coverage in the Salzburg test site.
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change in height between 2007 and 2013. The remaining 12.2% and 4.0% of the entire coverage
increased and decreased in height, respectively. Overall, we observe an increasing trend in commer-
cial timberland stocks in the test area.

Since the FORSAT methodology is fully 3D, a volumetric comparison provides much more valu-
able information. Figure 13 shows the volumetric changes of each forest class given in cubic metre.
The largest change occurs in the protection forests (class 101). It lost a volume of 13.3 million m3 due
to forest clearing, whereas it gained a volume of 44.6 million m3 due to growth, with standard devi-
ations of ± 1419 and ± 2512 m3, respectively.

For the validation of the change results, 60 sample points were selected in the detected deforesta-
tion class aiming to include one point per class fragment. Moreover, 140 sample points were selected
in the detected non-deforestation class covering the spatial extend as randomly as possible. In both
cases, the sample points were manually picked. Their actual states were manually investigated on the
available (external) aerial and satellite images. The results show that the deforestation class has the
correctness and completeness values of 65.0% and 73.6%, respectively. Correctness is here defined as
the percentage of truly detected classes in the sample points, also referred to as user’s accuracy, and is
relevant to the Type-I (commission) errors. Completeness is the percentage of truly detected classes
in the reference points, also referred to producer’s accuracy (Heipke et al. 1997; Shufelt 1999;
McKeown et al. 2000; Foody 2002; Rutzinger, Rottensteiner, and Pfeifer 2009). It is relevant to
the Type-II (omission) errors.

3.2. Shrub/tree cover mapping and change detection in Bern (Switzerland)

From a climatic point of view, Switzerland can be divided into two different parts: the northern part
of the Alps underlies the temperate Central European climate with stronger winters and more pre-
cipitation than the southern part, which is more influenced by the Mediterranean climate. The temp-
eratures can vary enormously throughout the season, especially because of the extreme differences in

Figure 13. Volumetric change of each forest class in the Salzburg test site.
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elevation. These diversifications can affect forests, for instance through natural hazards due to cli-
mate, and also lead to detectable changes.

The test area is near Thun in the canton of Bern (Switzerland) and covers around 27 km2 includ-
ing forestry as well as urban structures (Figure 6). It was covered by a LiDAR derived DSM from
2000 (Figure 14(a)) and IKONOS imagery derived DSM from October 2003 (Figure 14(b)). Both
of the DSMs whose point spacing are 4 m, were delivered in a fashion ready for analysis (Baltsavias,
Li, and Eisenbeiss 2006). The LiDAR DSM has an accuracy of 0.5 m and the IKONOS DSM about 2–

Figure 14. LiDAR DSM from 2000 (a), and IKONOS stereo imagery derived DSM from 2003 (b). Both DSMs have a resolution of
4 metres.

Figure 15. 3D comparison and change results of the Bern test site in Switzerland.
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3 m. Apart from the other test site applications, where the full processing chain of the FORSAT was
performed, in the Bern data set only the change detection step was performed, with special attention
to change detection of shrub and tree coverage.

Figure 16. Enlarged view of the blue rectangle area in Figure 15. The LiDAR DSM of 2000 (a), and the IKONOS DSM together with
temporal changes of 2003 (b). The black ellipsoids indicate the significant deforestation areas. Note that the colours are grayscale in
the print version.

Figure 17. The CORINE land cover of the Bern test site.
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The 3D Euclidean distances, showing the changes at the object surfaces, were mapped on the
change layer (Figure 15). The extreme surface changes in terms of ascending and descending
areas (dark green and dark red areas, respectively) in the south are due to image matching problems
because of topographic effects and large shadows of the high mountains. When working with the
VHR satellite imagery, special attention should be paid to the image acquisition conditions, other-
wise, the image matching may fail, which ends up in geometric deformations and spikes on the
reconstructed surface. Very large off-nadir angles and very low sun angles should be avoided in
the new image acquisitions. Figure 16 is the enlarged view of the blue rectangle in the upper right
side of Figure 15. Deforested areas, which are depicted in orange to red colour, in the outskirt regions
of the forest are clearly visible (Figure 16(b)). The grey areas had not changed between 2000 and
2003. The green areas show the growth of the vegetation including the partial penetration property
of LiDAR data in 2000.

The CORINE land cover layer of the year 2000 (Figure 17) was superimposed to the change
layer (Figure 15). Thus, the area and volume change of each land cover class is individually
determined. The pastures (class 231), mixed forest (class 313), non-irrigated arable land

Table 2. Percentage of CORINE land cover classes in the Bern test site (Switzerland).

Class no Land cover name Area percentage

112 Discontinuous urban fabric 4.2%
121 Industrial or commercial units 1.3%
211 Non-irrigated arable land 20.1%
231 Pastures 30.1%
243 Land principally occupied by agriculture with significant areas of natural vegetation 1.1%
311 Broad-leaved forest 3.4%
312 Coniferous forest 9.4%
313 Mixed forest 24.8%
321 Natural grasslands 1.3%
322 Moors and heathland 4.3%

Figure 18. Areal change of each class coverage in the Bern test site.
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(class 211) and coniferous forest (class 312) are the dominating types of the test site (Table 2).
Regarding the percentage of area affected by change, broad-leaved forest (class 311) shows the
highest canopy height decrease with 36.1% followed by the mixed forests (class 313) with 26.9%
and the coniferous forests (class 312) with 20.6% (Figure 18). In case of the change of increase
in canopy height, the moors and heathland (class 322) with 22.1%, the coniferous forests (class
312) with 17.9% and the mixed forests (class 313) with 11.0% have the highest percentage of the
affected area.

When the volumetric change is considered, different classes attracted attention. The shrub related
classes 322 and 231 show a considerable increase in their volume up to 2.2 million ± 1324 m3 and
5.0 million ± 2228 m3, respectively (Figure 19). The mixed forest (class 313) has the greatest volume
changes both along the decrease and increase sides with 17.9 million ± 3510 m3 and 5.9 million ±
2240 m3, respectively. Therefore, 12.0 million m3 mixed forest stock has been lost in between
2000 and 2003.

3.3. Man-made changes in Malaga (Spain)

Economic and urban growth pressures, as well as the further expansion of infrastructures, cause con-
siderable deforestation in Spain. An infrastructural development case, which is a highway project
near Malaga, Spain, was selected as another test site to show the capabilities of the FORSAT meth-
odology (Figure 6). The site is located in the south-west of the city of Malaga and covers about
40 km2 of hills in the south-west and flat urban areas in the north. The development of Malaga
has led to new construction of a highway ‘Autovía del Mediterráneo’, which has been at the expense
of loss of forest and agricultural areas. The highway crosses the test site along North to South
directions.

In the area several archival VHR satellite imagery acquisitions are available, thus a new image
order was not required. A set of IKONOS stereo imagery from December 2003 is used as the

Figure 19. Volumetric change of each class in the Bern test site.
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historic data which depicts the surface topography in the past (Figure 20(a)). A set of Pléiades
stereo imagery from December 2012 is used as the recent data which shows infrastructural
developments and consequently deforestation (Figure 20(b)). Both stereo pairs have consider-
able areas of cloud and shadow coverage, which were masked out in the following FORSAT
image matching step. The generated IKONOS and Pléiades DSMs (both in 2 m resolution)
were compared in FORSAT. The resulting change layer is visualised in Figure 21 from red
(decrease in height) to green (increase in height) colour. The black ellipse shows the construc-
tion of the new highway. The red linear feature below the ellipse corresponds to the border line
forest cut and earthworks excavation along the previously existing highway. The enlarged view
of the black rectangle in Figure 22 shows the construction of the tunnel portal and the feeder
motorway. The excavations (in red colour) and embankments (in green colour) can clearly
be identified along the highway route.

The land use classes in the Forest Plan Andalusia (PFA), which is shown in Figure 23, were inter-
sected with the change layer so that each land use type is analysed individually. The test area is highly
urbanised with large urban and agriculture classes whose coverages are 37.3% and 33.5%, respect-
ively (Table 3). The largest forest class is other woody plants with 19.9% coverage, predominately
located in the mountainous region.

When considering the changes of the canopy coverage, the olive trees (class 70) are the most
changed with an increase in height of 47.8% of its area and a decrease in height of 16.6%.
Note that the olive trees class has the smallest class coverage with 0.01% in the whole test area

Figure 20. Input image data sets. The historical IKONOS image from December 2003 (a), and the recent Pléiades image from
December 2012 (b).
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Figure 21. Change results of the Malaga test site. The enlarged view of the black rectangle is given in Figure 22. Note that the
colours are grayscale in the print version.

Figure 22. Enlarged view of the black rectangle in Figure 21. Pléiades true colour composite (a), and change layer of the corre-
sponding coverage (b). Note that the colours are grayscale in the print version.
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(Figure 24). This diagram also shows that the classes with a large percentage of changes like other
woody plants (class 130) and spare vegetation (class 180) are located in the vicinity of the route
of the new highway.

Figure 23. Land use types of the Forest Plan Andalusia of the Malaga test site.

Table 3. Percentage of the land cover classes of the Forest Plan Andalusia in the Malaga test site (Spain).

Class no Land cover name Area percentage

20 Holly oak 0.4%
70 Olive trees 0.1%
80 Eucalyptus 0.4%
103 Pine halepensis 4.0%
130 Other woody plants 19.9%
140 Shrub 3.4%
150 Riparian vegetation 0.5%
180 Spare vegetation 0.5%
9991 Agricultural 33.5%
9992 Water 0.1%
9993 Urban 37.3%
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Regarding the changes in volume, the urban (class 9993) and agriculture (class 9991) types show
large undulations both in decrease and increase directions. This is the outcome of ongoing construc-
tion and cultivation activities of the area. During the nine years of the time span, the other woody
plants (class 130) lost 6.6 million ± 827 m3 and gained 21.9 million ± 1256 m3 in volumes
(Figure 25).

Figure 24. Areal change of each class coverage in the Malaga test site.

Figure 25. Volumetric change of each class in the Malaga test site.
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4. Discussion

Conventionally, information related to trees, for example height, cross-section area, diameter at
breast height (DBH, i.e. diameter at 1.3 m above ground) are measured in the field using several
tools such as calipers, steel tapes, optical devices, level rods and hypsometers (Husch, Miller, and
Beers 1982; Päivinen, Nousiainen, and Korhonen 1992; Korhonen et al. 2006). Collecting forest
information through ground/field measurements is slow and expensive (Pouliot et al. 2002). All
around the world, forests are becoming more and more vulnerable to fires, droughts, insect epidemic,
and diseases because of climate change (Foley et al. 2005). The increasing demands for rapid, up-to-
date and comprehensive information led to more effective solutions. Remote sensing-based tech-
niques offer such effective tools for monitoring and evaluating forest treatments (Noujdina and
Ustin 2008; Ke, Quachenbush, and Im 2010; Van Leeuwen and Nieuwenhuis 2010).

FORSAT is a 3D forest information solution using VHR satellite imagery as the primary data
source. It is a complete system offering the full steps of the processing chain from pre-processing
and image orientation to DSM generation and change analysis. It provides quick and on-instant for-
est change information in area and volume dimensions. It is a unique system providing volumetric
changes and their error bounds. On the other hand, it is a straightforward method which does not
take into account the surface roughness, image texture, and spectral information. It also includes
inherent limitations such as the difference between timber volumes and crown volumes or seasonal
effects due to changes in the leaf area in non-evergreen forests.

Increasing usage of remote sensing data and methods in forestry led to develop software and
tools. Examples are the forest vitality and change monitoring (FVCM) tool (Marx and Tetteh
2017), CLASlite software (Asner et al. 2009) and high resolution inventory solutions (HRIS) system
(Sambatti et al. 2017). They perform general tasks as image registration, classification, disturbance
monitoring and 2D mapping. They have input data restrictions, such that HRIS uses LiDAR, col-
our infrared and ground sampling; FVCM uses only RapidEye data, while CLASlite uses data only
from Landsat, SPOT, Terra and Aqua satellites. FORSAT differs in the sense that it is a single pur-
pose (deforestation and change detection) application by use of multiple sources (several VHR sat-
ellite images and LiDAR point clouds if available) data. It has 3D capabilities with embedded image
matching module for DSM generation and a surface matching module for 3D volumetric change
detection. Below are the key features which altogether make FORSAT a viable option over the
alternatives.

1) Input of triplet and stereo VHR satellite images,
2) RPC block adjustment for improvement of the geo-positioning accuracy,
3) An advanced multi-image matching algorithm,
4) Coarse-to-fine hierarchical image matching capability,
5) Epipolar constrained image matching in order to reduce the correspondence search space,
6) Hybrid image matching by a combination of area-based and feature-based methods,
7) Refined point matching by use of the multi-photo geometrically constrained matching (Gruen

and Baltsavias 1988),
8) Dense image matching output,
9) Genuine 3D co-registration and surface matching method for accurate DSM alignment,
10) Theoretical precision of the estimated 3D transformation parameters and statistical tools for

internal quality control,
11) The capability of matching of surface datasets from different sources and at different qualities

and resolutions,
12) 3D change detection which can be factorised into vertical, horizontal and volume dimensions,
13) The capability of computation of the 3D volume of changes together with theoretical precisions,
14) Standalone software implementation in which all required libraries and functions are owned

and embedded.
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FORSAT software requires at least a 4 GB memory (higher is preferred), a fast CPU and a high
performance graphic card. Computational burden is heavy. It takes 6–8 h of time from pre-proces-
sing to end results for a moderate size forest (such as the Salzburg data set).

FORSAT software is more efficient where two or more VHR image derived DSMs are compared.
It can also handle the mixed case where one of them is a LiDAR derived DSM. This is a matter of data
availability, although it is not a favourable situation, since the LiDAR DSM will be systematically
lower due to vegetation penetration (Matikainen, Hyyppa, and Kaartinen 2009; Ressl et al. 2016;
Simpson, Smith, and Wooster 2017). The penetration ability changes with the flying altitude and
pulse repetition frequency (Lee and Wang 2018). Moreover, LiDAR scan angle can be off-nadir
and highly variable in the same flight strip or across different flight strips, which causes modelling
problems along the canopy surface (Liu et al. 2018).

If FORSAT is to be used in a different type of ecosystem, for example monitoring a pest impact on
a corn plantation, the image resolution (accordingly the DSM resolution) and threshold values
should be set appropriately. Prospective applications could be individual tree detection, carbon esti-
mation, forest fire severity analysis, monitoring of clearing, logging and other forest disturbances.
When only a few trees (or a large number of trees in total, but from irregular locations within the
study area) are missed or removed, change detection may fail, since such cartographic details cannot
be delineated with the current resolution levels of the VHR satellite images. Processing of the GEDI
(Global Ecosystem Dynamics Investigation) data is another possible application. GEDI is a LiDAR
sensor that was mounted on the International Space Station (ISS) in late 2018 with the primary mis-
sion being the 3D mapping of the world’s forests. GEDI is the first spaceborne LiDAR, which will
possibly open new doors in the realm of 3D forest modelling.

5. Conclusions

Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are
desirable. Our FORSAT, an operational system, is capable of providing such spatial information
for long-term monitoring of forest areas. The implemented methodology allows analysing raw sat-
ellite imagery and extracting meaningful and quantitative information about the world’s forests, such
as area, volume and measurements of deforestation of a forest.

The basic input data is the VHR optical satellite imagery from various sensors. The processing
chain is a thorough methodology, which was implemented under a single, universal and compact
software solution. Image data from multiple satellite sensors are input to single-source software,
therefore a standard change output can be generated. The three pilot applications with different
objectives demonstrate the capability and replicability of the FORSAT methodology. The basic forest
deforestation causes such as storms, pests, fires, shrub/tree coverage degenerations, urbanisation and
infrastructural construction activities can be detected and quantified. Not only 2D area computations
but also 3D volume computations can be performed so that the change in the forest stocks can be
analysed. A rigorous evaluation on uncertainties of volume measurements is provided in the form
of theoretical precisions.

Resulting change analysis provides an insight into the space–time evolution of forests, and allows
various service applications related to forest industry as well as other topics such as urbanisation,
construction, agriculture, geomorphology, mining, etc. The results have generated recommendations
for the public bodies and private organisations to use VHR satellite data for many forest information
needs, which do not require centimetre accuracy. The presented FORSAT system is an affordable
and reliable solution for sustainable forest management. It is a unique supplementing software for
enhancing current forest operations.
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