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Registration of point clouds using range and intensity information

D. Akca
Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland

ABSTRACT: An algorithm for the least squares matching of overlapping 3D surfaces is pre-
sented. It estimates the transformation parameters between two or more fully 3D surfaces, using
the Generalized Gauss-Markoff model, minimizing the sum of squares of the Euclidean dis-
tances between the surfaces. This formulation gives the opportunity of matching arbitrarily ori-
ented 3D surfaces simultaneously, without using explicit tie points. Besides the mathematical
model and execution aspects we give further extensions of the basic model: simultaneous
matching of multi sub-surface patches, and matching of surface geometry and its attribute in-
formation, e.g. reflectance, color, temperature, etc. under a combined estimation model. We
give practical examples for the demonstration of the basic method and the extensions.

1 INTRODUCTION

For 3D object modeling data acquisition must be performed from different standpoints. The de-
rived local point clouds must be transformed into a common system. This procedure is usually
referred to as registration. In the past, several efforts have been made concerning the registra-
tion of 3D point clouds. One of the most popular methods is the Iterative Closest Point (ICP)
algorithm developed by Besl & McKay (1992), Chen & Medioni (1992), and Zhang (1994).
The ICP is based on the search of pairs of nearest points in the two sets and estimates the rigid
body transformation, which aligns them. Then, the rigid body transformation is applied to the
points of one set and the procedure is iterated until convergence.

Several variations and improvements of the ICP method have been made (Bergevin et al.
1996, Masuda & Yokoya 1995). In Besl & McKay (1992) and Zhang’s (1994) works the ICP
requires every point in one surface to have a corresponding point on the other surface. An alter-
native approach to this search scheme was proposed by Chen & Medioni (1992). They used the
distance between the surfaces in the direction normal to the first surface as a registration
evaluation function instead of the point-to—nearest point distance. This point-to-tangent plane
distance idea was originally proposed by Potmesil (1983). In Dorai et al. (1997) the method of
Chen & Medioni was extended to an optimal weighted least-squares framework. Zhang (1994)
proposed a thresholding technique using robust statistics to limit the maximum distance be-
tween points. Masuda & Yokoya (1995) used the ICP with random sampling and least median
square error measurement that is robust to a partially overlapping scene. Okatani & Deguchi
(2002) proposed the best transformation of two range images to align each other by taking into
account the measurement error properties, which are mainly dependent on both the viewing di-
rection and the distance to the object surface.

The ICP algorithm always converges monotonically to a local minimum with respect to the
mean-square distance objective function (Besl & McKay 1992). It does not use the local sur-
face gradients in order to direct the solution to a minimum. Several reviews and comparison
studies about the ICP variant methods are available in the literature (Jokinen & Haggren 1998,
Williams et al. 1999, Campbell & Flynn 2001, Rusinkiewicz & Levoy 2001).
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In Szeliski & Lavallee (1996) and Neugebauer (1997) two gradient descent type of algo-
rithms were given. They adopt the Levenberg-Marquardt method for the estimation.

Since 3D point clouds derived by any method or device represent an object surface, the
problem should be defined as a surface matching problem. In Photogrammetry, the problem
statement of surface patch matching and its solution method was first addressed by Gruen
(1985) as a straight extension of Least Squares Matching (LSM).

There have been some studies on the absolute orientation of stereo models using Digital Ele-
vation Models (DEM) as control information (Ebner & Strunz 1988, Rosenholm & Torlegard
1988). This work is known as DEM matching. This method basically estimates the 3D similar-
ity transformation parameters between two DEM patches, minimizing the sum of squares of dif-
ferences along the z-axes.

Maas (2002) successfully applied a similar method to register airborne laser scanner strips,
among which vertical and horizontal discrepancies generally show up due to GPS/INS inaccu-
racy problems. Another similar method has been presented in Postolov et al. (1999) for regis-
tering surfaces acquired using different methods, in particular, laser altimetry and photogram-
metry. Furthermore, techniques for 2.5D DEM surface matching have been developed, which
correspond mathematically to Least Squares Image Matching. The DEM matching concept can
only be applied to 2.5D surfaces, whose analytic function is described in the explicit form as a
single valued function, i.e. z=f(x,y). 2.5D surfaces are of limited value in case of generally
formed objects.

When the surface curvature is either homogeneous or isotropic, as it is the case with all first
or second order surfaces, e.g. plane or sphere, the geometry-based registration techniques will
fail. In some studies surface geometry and intensity (or color) information has been combined
in order to solve this problem. Maas (2002) used the airborne laser scanner reflectance images
as complimentary to the height data for the determination of horizontal shift parameters be-
tween the laser scanner strips of flat areas. Roth (1999) and Vanden Wyngaerd & Van Gool
(2003) used feature-based methods in which interest points and regions are extracted from the
intensity images. More often the intensity information is processed as a metric under an ICP al-
gorithm in order to reduce the search effort of correspondent point pairs or in order to eliminate
the ambiguities due to inadequate geometric information on the object surface (Weik 1997,
Johnson & Kang 1999, Godin et al. 2001, Yoshida & Saito 2002).

The LSM (Gruen 1985) concept has been applied to many different types of measurement
and feature extraction problems due to its high level of flexibility and its powerful mathemati-
cal model: Adaptive Least Squares Image Matching, Geometrically Constrained Multiphoto
Matching, Image Edge Matching, Multiple Patch Matching with 2D images, Multiple Cuboid
(voxel) Matching with 3D images, Globally Enforced Least Squares Template Matching, Least
Squares B-spline Snakes. For a detailed survey the author refers to Gruen (1996). If 3D point
clouds derived by any device or method represent an object surface, the problem should be de-
fined as a surface matching problem instead of a point cloud matching. In particular, we treat it
as least squares matching of overlapping 3D surfaces, which are digitized/sampled point by
point using a laser scanner device, the photogrammetric method or other surface measurement
techniques. Our mathematical model is another generalization of the LSM (Gruen 1985), as for
the case of multiple cuboid matching in 3D voxel space (Maas & Gruen 1995).

The details of the mathematical modeling of the proposed method and the execution aspects
are explained in the following section. The further extensions to the basic model are given in
the third section. Two practical examples for the demonstration of the basic model and the ex-
tensions are presented in the fourth section.

2 LEAST SQUARES 3D SURFACE MATCHING (LS3D)
2.1 The basic estimation model

Assume that two different partial surfaces of the same object are digitized/sampled point by
point, at different times (temporally) or from different viewpoints (spatially). Although the
conventional sampling pattern is point based, any other type of sampling pattern is also ac-
cepted. f(x,y,z) and g(x,y,z) are discrete 3D representations of the conjugate regions of the
object in the left and right surfaces respectively. The problem statement is estimating the final



location, orientation and shape of the search surface g (x,y, z), which satisfies minimum condi-
tion of Least Squares Matching with respect to the template f(x,y, 2).
In an ideal situation one would have

fx,y,2)=g(x,,2) (1)

Taking into account the noise and assuming that the template noise is independent of the
search noise, Equation 1 becomes

f(x’y’Z)_e(-x’y’Z)zg(-x’y’Z) (2)

where e (x,y,z) is a true error vector. Equation 2 are observation equations, which functionally
relate the observations f(x, y, z) to the parameters of g (x,y, z). The matching is achieved by least
squares minimization of a goal function, which represents the sum of squares of the Euclidean
distances between the template and the search surface elements: ) lld|I’=min, where d stands
for the Euclidean distance. The final location is estimated with respect to an initial position of
g (x,y,7), the approximation of the conjugate search surface go(x, ¥,2).

To express the geometric relationship between the conjugate surface patches, a 7-parameter
3D similarity transformation is used:

x=1,+m(r Xy +H,yYo +1320)

y =1, +m(ry Xy +ry Yo+ 3%)

3)

z=t, +m(ry Xy + Y +1332)

where r;=R(w,p,x) are the elements of the orthogonal rotation matrix, [, t, tZ]T is the transla-
tion vector, and m is the uniform scale factor. Depending on the deformation between the tem-
plate and the search surfaces, any other type of 3D transformations could be used, e.g. 12-
parameter affine, 24-parameter tri-linear, or 30-parameter quadratic family of transformations.

In order to perform least squares estimation, Equation 2 must be linearized by Taylor expan-
sion.

0 0 0

ox dy 0z
“4)
with
dr="dp,  dy=Ldp , dz=Ld)p, )
api api api

where p;e {t.,t,,1,,m, ®, ¢, x} is the i-th transformation parameter in Equation 3. Differentia-
tion of Equation 3 gives:

dx=dt, +a,dm+a,,do+a,d@+a,;dx
dy=dt, +aydm+a, do+ayde+aydx ©6)

dz=dt, +a;ydm+a;;do+tay, de+az;dx
where a;; are the coefficient terms, whose expansions are trivial. Using the following notation

dg°(x,y,2) 9g°(x,,2) 9g°(x,y,2)
- ) ) T s 7
£ ox & dy 8: 0z ™

and substituting Equations 6, Equation 4 results in the following:



—e(x,y,Z)=gxdtx +gydty +gzdtz +(gxa10 +gyazo+gza30)dm

+(8,a,, + g,y +g.a3)dO -
+(8,a1, + 8,0y +8.a3,)d0

+(g a3+ 8,0y + 8.a3)dK—(f(x,9,2) - g%(x,y,2)

In the context of the Gauss-Markoff model, each observation is related to a linear combina-
tion of the parameters, which are variables of a deterministic unknown function. The terms {g,,
8y, 8.} are numeric first derivatives of this function g (x,y, 2).

Equation 8 gives in matrix notation

—e=Ax-1 , P ©)

where A is the des1gn matrix, x'=[dr, dt, dt, dm do d¢ dx] is the parameter vector, and
I=f(x,y,2)-¢ (x y,7) is the constant vector that consists of the Euclidean distances between the
template and correspondent search surface elements. The template surface elements are ap-
proximated by the data points, on the other hand the search surface elements are represented in
two different kind of piecewise forms (planar and bi-linear) optionally, which will be explained
in the following. In general both surfaces can be represented in any kind of piecewise form
Wlth the statlstlcal ex1pectat10n operator E{} and the assumptions e~N(0,c, QH) and
ol QH—GO | =K;,=E{ee } Equation 9 is a Gauss-Markoff estimation model. Q;, P=P; and
K, stand for a priori cofactor, weight and covariance matrices respectively.
The unknown transformation parameters are treated as stochastic quantities using proper a
priori weights. This extension gives advantages of control over the estimating parameters. We
introduce the additional observation equations on the system parameters as

—e,=Ix-1, , P, (10)

where I is the identity matrix, I, is the (fictitious) observation vector for the system parameters,
and P, is the associated weight coefficient matrix. The weight matrix P, has to be chosen ap-
propriately, considering a priori information of the parameters. An infinite weight value
((Py);; > ) excludes the i-th parameter from the system, assigning it as constant, whereas zero
weight ((P,);=0) allows the i-th parameter to vary freely, assigning it as unknown parameter in
the classical meaning.

The least squares solution of the joint system Equations 9 and 10 gives as the Generalized
Gauss-Markoff model the unbiased minimum variance estimation for the parameters

x =(ATPA+P,)"(ATPI+PJ,) (solution vector) (11D
63 =0TPy+vIPy,)/r (variance factor) (12)
vy =Ax -1 (residuals vector for surface observations) (13)
v, =Ix-1, (residuals vector for parameter observations) (14)

where " stands for the Least Squares Estimator, and r is the redundancy. When the system con-
verges, the solution vector converges to zero (X — 0). Then the residuals of the surface obser-
vations (v); become the final Euclidean distances between the estimated search surface and the
template surface elements.

), =8x,y,2),;, - f(x,y,2);, , i={l,...,n} (15)

The function values g°(x, y,z) in Equation 2 are actually stochastic quantities. This fact is ne-
glected here to allow for the use of the Gauss-Markoff model and to avoid unnecessary compli-
cations, as typically done in LSM (Gruen 1985).

Since the functional model is non-linear, the solution is obtained iteratively. In the first it-
eration the initial approx1mat10ns for the parameters must be provided:
p, € { 1, t ,tzo,m o’ (p K } After the solution vector (Equation 11) is solved, the search sur-
face g°(x,y,z) is transformed to a new state using the updated set of transformation parameters,



and the design matrix A and the discrepancies vector I are re-evaluated. The iteration stops if
each element of the alteration vector X in Equation 11 falls below a certain limit:

dp|<c, . dpefdr,.dr,.dr, dmdo.de.dx} (16)

The numerical derivative terms {g., g,, g.} are defined as local surface normals n. Their cal-
culation depends on the analytical representation of the search surface elements.

Two first degree C” continuous surface representations are implemented: triangle mesh form
(Fig. 1a), which gives planar surface elements, and optionally grid mesh form (Fig. 1b), which
gives bi-linear surface elements. The derivative terms are given as x-y-z components of the lo-
cal normal vectors: [g, g, gZ]T=n =[n, n, nZ]T.

(a)

Figure 1. Representation of surface elements in planar (a), and bi-linear (b) forms. Note that T{ } stands
for the transformation operator, and g0 = go(x, v,2), f=f(x,,2).

Basically derivative terms {g., g,, g;} constitute a normal vector field with unit magnitude
lln1I=1 on the search surface. This vector field slides over the template surface towards the final
solution, minimizing the least squares objective function.

2.2 Execution aspects

The standard deviations of the estimated transformation parameters and the correlations be-
tween themselves may give useful information concerning the stability of the system and qual-
ity of the data content (Gruen 1985):

5,=60\0a, . 4,,€Q,=(ATPA+P,)! (17)

where Q,, is the cofactor matrix for the estimated parameters.
In order to localize and eliminate the occluded parts and the outliers a simple weighting
scheme adapted from the Robust Estimation Methods is used:

(1 if 1), <Ko
(), _{0 else ’ (18)

In our experiments K is selected as >10, since it is aimed to suppress only the large outliers.
Because of the high redundancy of a typical data arrangement, a certain amount of occlusions
and/or smaller outliers do not have significant effect on the estimated parameters.

The computational effort increases with the number of points in the matching process. The
main portion of the computational complexity is to search the corresponding elements of the
template surface on the search surface, whereas the parameter estimation part is a small system,
and can quickly be solved using Cholesky decomposition followed by back-substitution.
Searching the correspondence is guided by an efficient boxing structure (Chetverikov 1991),
which partitions the search space into cuboids. For a given surface element, the correspondence
is searched only in the box containing this element and in the adjacent boxes.



Since the method needs initial approximations of the parameters due to the non-linear func-
tional model, one of the methods for pre-alignment in the literature (Murino et al. 2001, Luc-
chese et al. 2002, Vanden Wyngaerd & Van Gool 2002) can be utilized.

Two first degree C° continuous surface representations are implemented. In the case of multi-
resolution data sets, in which point densities are significantly different on the template and
search surfaces, higher degree C' continuous composite surface representations, e.g. bi-cubic
Hermit surface (Peters 1974), should give better results, of course increasing the computational
expense.

3 FURTHER EXTENSIONS TO THE BASIC MODEL
3.1 Simultaneous multi-subpatch matching

The basic estimation model can be implemented in a multi-patch mode, that is the simultaneous
matching of two or more search surfaces g;(x,y,2), i=1,...,k to one template surface f(x, y, 7).
—e,=A.x,~1, . P, (19)

l

Since the parameter vectors x; ,..., xX; do not have any joint components, the sub-systems of
Equation 19 are orthogonal to each other. In the presence of auxiliary information those sets of
equations could be connected via functional constraints, e.g. as in the Geometrically Con-
strained Multiphoto Matching (Gruen 1985, Gruen & Baltsavias 1988) or via appropriate for-
mulation of multiple (>2) overlap conditions.

An ordinary point cloud includes enormously redundant information. A straightforward way
to register such two point clouds could be matching of the whole overlapping areas. This is
computationally expensive. We propose multi-subpatch mode as a further extension to the basic
model, which is capable of simultaneous matching of sub-surface patches, which are selected in
cooperative surface areas. They are joined to the system by the same transformation parameters.
This leads to the observation equations

-e;,=Ax-1l, , P,

L

(20)

with i=1,..., k subpatches. They can be combined as in Equation 9, since the common pa-
rameter vector x joints them to each other. The individual subpatches may not include sufficient
information for the matching of whole surfaces, but together they provide a computationally ef-
fective solution, since they consist of only relevant information rather than using the full data
set. One must carefully select the distribution and size of the subpatches in order to get a homo-
geneous quality of the transformation parameters in all directions of the 3D space.

3.2 Simultaneous matching of surface geometry and intensity

In case of lack of sufficient geometric information (homogeneity or isotropicity of curvatures)
the procedure may fail, since there is not a unique solution geometrically, e.g. in case of
matching of two planes or spherical objects. An object surface may have some attribute infor-
mation attached to it. Intensity, color, and temperature are well known examples. Most of the
laser scanners can supply intensity information in addition to the Cartesian coordinates for each
point, or an additional camera may be used to collect texture. We propose another further ex-
tension that can simultaneously match intensity information and geometry under a combined
estimation model. In this approach the intensity image of the point cloud also contributes ob-
servation equations to the system, considering the intensities as supplementary information to
the range image.

Rather than adopting a feature-based or step-wise approach our method sets up quasi-
surfaces from intensity information in addition to the actual surfaces. A hypothetical example
of forming the quasi-surfaces is given in Figure 2. The procedure starts with the calculation of
surface normal vectors at each data point. The actual surface will include noise and surface
spikes (Fig. 2b), which lead to unrealistic calculation for the normal vectors. To cope with the
problem a moving average or median type filtering process could be employed. But still some
noise would remain depending on the window size.



An optimum solution is the least squares fitting of a global trend surface to the whole point
cloud (Fig. 2¢). It will suppress the noise component and preserves the global continuity of the
normal vectors along the surface. We opt for the parametric bi-quadratic trend surface, which is
sufficient to model the quadric type of surfaces, e.g. plane, sphere, ellipsoid, etc. For the tem-
plate surface f(x,y, z) we may write:

2 2
F(u,w)=% > bu'w/ (21)
i=0 j=0
where u, w € [0,1]2, Fuw)e R® is the position vector of any point on the trend surface, and
b,e R* are the algebraic coefficients, which are estimated by the least squares fitting. For each

point the normal vector n;is calculated on the trend surface F(u,w) and attached to the actual
surface f(x,y, z) (Fig. 2d):

n, =n,(uw)=F,xF,[|F,xF,

(22)

where F, and F,, are the tangent vectors along the u and w-axes respectively. Finally the quasi-
surface f.(x,y,z) is formed in such a way that each point of the actual surface f(x,y,z) is
mapped along its normal vector n; up to a distance proportional to its intensity value ¢, (Fig.
2e).

fe(y.2)=f(x,y,2)+n, ke, (23)

where A is an appropriate scalar factor for the conversion from the intensity range to the Carte-
sian space.

L T @ ©

Figure 2. Forming the quasi-surface. (a) Point cloud with intensity information, (b) meshed surface of the
point cloud, (c) trend surface fitted to the point cloud, (d) noise-free normal vectors, (e) generated quasi-
surface in addition to the actual one.

Rather than the actual surface f(x,y,z) the trend surface F(u,w) can also be defined as the
datum, which leads to

fo(x, y,z)=F(u,w)+nf7\,cf (24)

This isolates the geometric noise component from the quasi-surface f; (x,y,z), but strongly
smoothes the geometry. Equations 23 and 24 assume a fairly simplistic radiometric model (in-
tensities are mapped perpendicular to the geometric surface). We will refine this model in sub-
sequent work.

The same procedure is performed for the search surface g (x,y, z) as well:

g.(x,y,0)=g(x,y,2)+n, Ac, (25)



Equation 2 should also be valid for the quasi-surfaces under the assumption that similar illu-
mination conditions exist for the both template and search surfaces:

fey,2)—e (x,y,2)=8.(x,,2) (26)

The random errors of the template and search quasi-surfaces are assumed to be uncorrelated.
The contrast and brightness differences or in the extreme case specular reflection will cause
model errors, and deteriorate the reliability of the estimation. The radiometric variations be-
tween the template and search surface intensities should be adapted before matching by pre-
processing or appropriate modeling in the estimation process by extra parameters.

For two images of an object acquired by an optical-passive sensor, e.g. a CCD camera, such
an intensity transfer function (¢ =ry+c,r;) could be suitable for the radiometric adaptation,
where ry (shift) and r; (scale) are radiometric correction parameters. In the case of laser scanner
derived intensity images the radiometric variations are strongly dependent on both the incident
angle of the signal path with respect to object surface normal and object-to-sensor distance.
Then, for a plane type of object the radiometric variations can be modeled in first approximat-
ing as in the following:

fo(y,20)—e.(x,y,2)=g.(x,y,2) +1, +un (27)

where u is the abscissa of the search trend surface G(u,w), considering that u-axis is the hori-
zontal direction. In other words, u-axis is the principal direction of changing of the incident an-
gles. Depending on the characteristics of scan data it can be replaced by ordinate value w, or
another type of parameterization. In general a second order bivariate polynomial
(ro+uri+wry+uwrs+ Wr,+ wzrs) or an appropriate subpart of it can be used.

Although the radiometric parameters r, and r| are linear a priori, we expand them to Taylor
series. Equation 27 in linearized form gives:

—e.(x,y,2)=8.,dx+g, ,dy+g. dz

28
+dry +udn = (f (x,9,2) = (g2(x, y,2) +{ry +ur’;n})) @

where g.., g.,, and g, stand for the derivative terms like as given in Equation 7 for the actual
surface observations. The first approximations of the radiometric parameters are r,"=r,"=0. At
the end of the each iteration the quasi search surface gco(x,y, z) 1s transformed to a new state
using the updated set of transformation parameters, and subsequently re-shaped by the current
set of radiometric parameters rd+ur,” along the normal vectors n,, which are calculated on the
search trend surface G(u,w).

The quasi-surfaces are treated like actual surfaces in the estimation model. They contribute
observation equations to the design matrix, joining the system by the same set of transformation
parameters. After the further expansion of Equation 28 and with the assumptions E{e.}=0 and
E{e. eCT}: oo’P,”, the total system becomes

—e =Ax-1 , P
—e,=Ix-1, , P, (29)

-e.=A.x-1, , P

c

where e., A, , and P, are the true error vector, the design matrix, and the associated weight co-
efficient matrix for the quasi-surface observations respectively, and . is the constant vector that
contains the Euclidean distances between the template and correspondent search quasi-surfaces
elements. The hybrid system in Equation 29 is of the combined adjustment type that allows si-
multaneous matching of geometry and intensity.

In our experiments, weights for the quasi-surface observations are selected as (P.);<(P);,
and the intensity measurements of the (laser) sensor are considered to be uncorrelated with the
distance measurements (E{e.e" }=0) for the sake of simplicity of the stochastic model.



4 EXPERIMENTAL RESULTS

Two practical examples are given to show the capabilities of the method. All experiments were
carried out using own self-developed C/C++ software that runs on Microsoft Windows® OS.
The processing times were counted on a PC with Intel® P4 2.53Ghz CPU and 1 GB RAM. In
all experiments the initial approximations of the unknowns were provided by interactively se-
lecting 3 common points on both surfaces before matching. Since in all data sets there was no
scale difference, the scale factor m was fixed to unity by infinite weight value ((P,); — ).

The first example is the registration of two point clouds of a room (Fig. 3) in Neuschwan-
stein Castle in Bavaria, Germany. The scanning was performed by using the IMAGER 5003
(Zoller+Frohlich) terrestrial laser scanner. The average point spacing is 5 millimeters. The
point cloud Figure 3b was matched to Figure 3a by use of the LS3D surface matching. The it-
eration criteria values ¢; were selected as 1.0e-4 meters for the elements of the translation vec-
tor and 1.0e-3 grad for the rotation angles.

In this experiment the whole overlapping areas were matched. The numerical result of the
matching is given in part I of Table 1. Relatively homogeneous and small magnitudes of the
theoretical precision values of the parameters show success of the matching.

(b)

Figure 3. Example “room”. (a) Template and (b) search point clouds, (c) composite point cloud after the
LS3D surface matching. Note that laser scanner derived intensities are back-projected onto the point
clouds only for the visualization purpose.

A further matching process was carried out using the simultaneous multi-subpatch approach
of the LS3D. Seven occlusion-free cooperative subpatches were selected. The result of the
matching is given in part II of Table 1. The simultaneous multi-subpatch approach apparently
decreases the computation times.

Table 1. Numerical results of “room” example.

# Surface  No. Iter. Time Sigma Standard dev. of  Standard dev. of
mode points (sec.) naught (mm) ¢,/t,/t, (mm) o/ ¢/« (grad/100)

I P 1,155,502 10 142.5 3.69 0.01/0.01/0.01 0.03/0.04/0.02
B 11 209.9 3.70 0.01/0.01/0.01 0.03/0.04/0.02

Irp 279,088 8 25.8 3.60 0.01/0.02/0.03 0.07/0.06/0.04
B 11 43.9 3.65 0.01/0.02/0.03 0.07/0.06/0.04

P: planar, B: bi-linear surface representation.



The second experiment refers to simultaneous matching of surface geometry and intensity.
Two partial scans of a wall painting in Neuschwanstein data set were matched (Fig. 4). Laser
scanner derived reflectance values were used as intensity information. The actual surface ob-
servations are considered as the unit weight (P);=1. Consequently weights for the quasi-
surface observations are selected as (P.);=0.75. The iteration criteria values c; were selected as
2.0e-4 meters for the elements of the translation vector and 5.0e-3 grad for the rotation angles.
The search surface (Fig. 4a) was matched to the template one (Fig. 4b). The numerical results
are given in Table 2.

Figure 4. Example “wall painting”. Actual (a) search and (b) template surfaces, generated (c) quasi-search
and (d) quasi-template surfaces, (e) composite point cloud after the simultaneous matching of geometry
and intensity by LS3D. Note that laser scanner derived intensities are back-projected onto the point clouds
(a), (b), and (e).

Since the object is a plane, only surface geometry is not enough for the matching. Using the
combined matching of surface geometry and intensity approach of the LS3D a successful solu-
tion has been achieved. The generated quasi surfaces (Fig. 4c and 4d) have been used in addi-
tion to the actual ones (Fig. 4a and 4b) in the matching process. The use of the trend surface as
datum gives a slightly better convergence rate.

Table 2. Numerical results of “wall painting” example.

# Surface  No. Iter. RMSE Standard dev. of Standard dev. of
mode points (mm) t./ t,/t, (mm) o/ ¢/« (grad/100)

m?* p 31,859 14 1.67 0.02/0.21/0.12 0.28/0.25/0.46
B 13 1.72 0.02/0.21/0.12 0.29/0.26/0.44

VP p 31,858 13 1.68 0.02/0.19/0.11 0.25/0.23/0.41
B 12 1.73 0.02/0.19/0.11 0.26/0.24 /0.40

RMSE: root mean square error of the residuals of the actual surface observations.
*) datum are the actual surfaces f/g(x, y, 7).
b) datum are the trend surfaces F/G(u, w).



5 CONCLUSIONS

An algorithm for the least squares matching of overlapping 3D surfaces is presented. Our pro-
posed method, the Least Squares 3D Surface Matching (LS3D), estimates the transformation
parameters between two or more fully 3D surfaces, using the Generalized Gauss-Markoff
model, minimizing the sum of squares of the Euclidean distances between the surfaces. The
mathematical model is a generalization of the least squares image matching method and offers
high flexibility for any kind of 3D surface correspondence problem. The least squares concept
allows for the monitoring of the quality of the final results by means of precision and reliability
criterions. By appropriately selecting the 3D transformation method and the surface representa-
tion type, it is able to match multi-resolution, multi-temporal, multi-scale, and multi-sensor data
sets.

The capabilities of the technique are illustrated by a practical example. There are several
ways to extend the technique. Here we give two of them, which are simultaneous matching of
surface geometry and intensity under a combined estimation model and simultaneous multi-
subpatch matching. Future studies will include more practical examples to demonstrate the full
power of the technique.

The technique can be applied to a great variety of data co-registration problems. Since it re-
veals the sensor noise level and accuracy potential of any kind of surface measurement method
or device, it can be used for comparison and validation studies. In addition time dependent
(temporal) variations of the object surface can be inspected, tracked, and localized using the
statistical analysis tools of the method.
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