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Abstract— For a two user fading Gaussian multiple access
channel with user cooperation, we show that window decoding
achieves the same sum rate as backwards decoding, when the
encoding is done using block Markov superposition coding. We
prove this result by showing that when optimum power control is
employed, the additional constraints on the sum rate imposed by
the use of window decoding instead of backwards decoding are
never active. While doing so, we also provide some properties
of power allocation that is jointly optimal with block Markov
coding and window decoding.

I. INTRODUCTION

Due to the additive nature of the wireless channel, the
signals from a set of communicating users in a wireless
network are superposed onto each other. In conventional
wireless network design, this fact has invariably been viewed
as a problem to be avoided by means of medium access
strategies. However, what is traditionally viewed as multiuser
interference, is in fact free side information, and can be
taken advantage of by employing clever cooperative encoding
strategies.

A multiple access channel (MAC) with generalized feed-
back constitutes a very good model for wireless systems since
it models the over-heard information by the transmitters. In
particular, a two user MAC with generalized feedback [1]
is described by (X1 × X2, P (y, y1, y2|x1, x2),Y × Y1 × Y2),
where user 1 has access to channel output Y1 and user two has
access to channel output Y2. For this channel, an achievable
rate region was obtained in [1], by using a superposition block
Markov encoding scheme, together with backwards decoding
[2], where the receiver waits to receive all B blocks of
codewords before decoding.

Recently, Sendonaris, Erkip and Aazhang have employed
these encoding and decoding strategies in a Gaussian MAC in
the presence of fading, leading to user cooperation diversity
and higher rates [3]. In this setting, the transmitters form their
codewords not only based on their own information, but also
on the information they have received from each other. It is
assumed in [3] that channel state information (CSI) for each
link is known to the corresponding receiver on that link, and
also phase of the channel state is known at the transmitters
so that coherent combining gain is attained. The achievable
rate region is shown to improve significantly over the capacity
region of MAC with non-cooperating transmitters, especially
when the channels between the two users are relatively good
on average.
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For a fading Gaussian MAC with perfect CSI at the trans-
mitters and the receiver, the power control policies that are
jointly optimal with block Markov coding and backwards
decoding were characterized in [4]. There, it was shown that,
by employing power control, block Markov coding strategy is
significantly simplified, in that at any given channel state, one
of the codeword components of each user has to be assigned
zero power, i.e., based on the relative channel qualities, only
two out of possible three components need to be transmitted.
Meanwhile, the rates achievable by this simple joint power
control and user cooperation strategy are shown to improve
notably over channel non-adaptive schemes.

In decoding messages encoded by block Markov super-
position coding, backwards decoding is not the only option.
Window decoding [5] is a powerful alternative, since it needs
to wait for only one block to start decoding, as opposed to
the backwards decoding which requires all the blocks to be
received, and starts decoding from the last block. Window
decoding has been recently studied in detail in the case of
relay channels [6], [7], where it was shown to achieve the
same rate as backwards decoding.

Window decoding for MAC with generalized feedback was
first studied in [5], and more recently in [8]. It was shown
in these works that the rate region achievable by window de-
coding is potentially inferior to that achievable by backwards
decoding, due to the additional number of constraints that are
needed to correctly decode the cooperative information while
fresh information is still being injected.

In this paper, we consider a two user fading cooperative
Gaussian MAC with complete channel state information at the
transmitters and the receiver, and average power constraints on
the transmit powers. In our model, the transmitters can adapt
their coding strategies as a function of the channel states, by
adjusting their transmit powers. Under these assumptions, we
show that the sum rate achievable by window decoding is
in fact identical to that achievable by backwards decoding,
when optimal power allocation is used in conjunction with
block Markov superposition encoding. We achieve this result
by showing that the power control policy which is optimal for
backwards decoding, also turns out to be optimal for window
decoding, as the additional constraints that are introduced due
to window decoding never become active with this power
allocation. We further show that window decoding with and
without stripping also achieve the same sum rate, when
optimal power allocation is employed.
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II. CHANNEL MODEL AND ENCODING STRATEGY

We consider a two user fading Gaussian MAC, where both
the receiver and the transmitters receive noisy versions of the
transmitted messages. The system is modelled by,

y0 =
√

h10x1 +
√

h20x2 + z0 (1)

y1 =
√

h21x2 + z1 (2)

y2 =
√

h12x1 + z2 (3)

where xi is the symbol transmitted by node i, yi is the symbol
received at node i, the receiver being denoted by i = 0; zi is
the zero-mean additive white Gaussian noise at node i, having
variance σ2

i , and
√

hij are the random fading coefficients, the
instantaneous realizations of which are assumed to be known
by both the transmitters and the receiver. We assume that the
channel variation is slow enough so that the fading parameters
can be tracked accurately at the transmitters, yet fast enough
to ensure that the long term ergodic properties of the channel
are observed within the blocks of transmission.

This channel model is a special case of the MAC with gener-
alized feedback [1], and its capacity region is not known to this
date. However, it has been shown in several works that there
exist cooperative schemes, which provide achievable rates well
beyond the capacity region of the traditional MAC with no
cooperation. The achievable rate regions are typically obtained
by using what is so called the superposition block Markov
encoding. In this paper, we employ a channel adaptive version
of the block Markov encoding scheme, where the powers with
which the cooperation information and the fresh information
are transmitted are varied as functions of the channel state.
The encoding strategy, which is a power controlled version of
the scheme in [1], [3] is summarized below.
Codebook generation:

• Independently generate 2n(R12+R21) length n sequences
un, with entries from an iid unit Gaussian distribu-
tion, and assign each of these sequences to a dis-
tinct set of messages {w′

12, w
′
21} ∈ {

1, · · · , 2nR12
} ×{

1, · · · , 2nR21
}

, i.e., form u(w′
12, w

′
21)

• For every u(w′
12, w

′
21), independently generate 2nR12

sequences xn
12 from an iid unit Gaussian distribution

and label them as xn
12 (w12,u(w′

12, w
′
21)), for w12 ∈{

1, · · · , 2nR12
}

.
• For every u(w′

12, w
′
21), independently generate 2nR21

sequences xn
21 from an iid unit Gaussian distribution

and label them as xn
21 (w21,u(w′

12, w
′
21)), for w21 ∈{

1, · · · , 2nR21
}

.
• For every pair u(w′

12, w
′
21) and xn

12 (w12,u(w′
12, w

′
21)),

independently generate 2nR10 sequences xn
10 from

an i.i.d unit Gaussian distribution, and label them
xn

10 (w10, w12,u(w′
12, w

′
21)), for w10 ∈ {

1, · · · , 2nR10
}

.
• For every pair u(w′

12, w
′
21) and xn

21 (x21,u(w′
12, w

′
21)),

independently generate 2nR20 sequences xn
20 from

an i.i.d unit Gaussian distribution, and label them
xn

20 (w20, w21,u(w′
12, w

′
21)), for w20 ∈ {

1, · · · , 2nR20
}

.

Note that the codebook generation is identical to those in [1],

[3], and is presented here in detail to allow for characteri-
zation of the achievable rate regions under several decoding
scenarios. Encoding however, is done differently in that the
codewords are scaled by variable power levels, thus adjusting
the variance of each transmitted component.
Encoding:

The transmission of B − 1 consecutive messages for
each user, i.e., w1[b] = (w10[b], w12[b]) and w2[b] =
(w20[b], w21[b]), b = 1, · · · , B − 1, is completed in B blocks.
Here, the transmitters allocate some of their powers to es-
tablish some common information in each block, and in the
next block, they coherently combine part of their transmitted
codewords. In the presence of channel state information, the
encoding in each block b is performed by

x
(k)
i =√

pi0(h(k))x(k)
i0 (wi0[b], wij [b],u (w12[b − 1], w21[b − 1]))

+
√

pij(h(k))x(k)
ij (wij [b],u (w12[b − 1], w21[b − 1]))

+
√

pui
(h(k))u(k) (w12[b − 1], w21[b − 1]) (4)

for i, j ∈ {1, 2}, i �= j, and k = 1, · · · , n, where x
(k)
i denotes

the kth entry of vector xi, and h(k) is the channel realization
during the transmission of the kth symbol. Here xi0 carries
the fresh information intended for the receiver, xij carries
the information intended for transmitter j for cooperation in
the next block, and u is the common information sent by
both transmitters for resolution of the remaining uncertainty
from the previous block. Assuming that the fading process is
stationary and ergodic, we can replace each sample h(k) of
the fading process with the corresponding random variable h
that obeys the stationary distribution, and can therefore drop
the time dependence, and convert time averages to statistical
averages over the distribution of h. Therefore, the transmit
power levels associated with each component can be denoted
by pi0(h), pij(h) and pui

(h), i, j ∈ 1, 2, i �= j, which are
required to satisfy the average power constraints,

E [pi0(h) + pij(h) + pui
(h)] = E[pi(h)] ≤ p̄i (5)

III. WINDOW VERSUS BACKWARDS DECODING

Following the block Markov encoding, decoding may be
done in several ways. Backwards decoding, which waits for
all blocks to be received, and then decodes starting from the
cooperation information in the last block, is perhaps the most
widely studied one of these schemes [1]–[3]. This approach
takes advantage of the fact that, by transmitting no fresh
information w1(B) and w2(B) in the last block B, the receiver
can decode the cooperation signal u(w12(B−1), w21(B−1))
without any interference, and then use the signal received
in the previous block to completely decode w12(B − 1),
w21(B − 1), w10(B − 1) and w20(B − 1). Meanwhile, the
cooperation information u(w12(B − 2), w12(B − 2)) is also
decoded. The disadvantage of this scheme however, is that
it needs to wait for all the blocks to be received before
starting the decoding process. For the fading Gaussian MAC

©1-4244-0357-X/06/$20.00     2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.



with cooperating encoders, the rate region achievable by our
proposed power controlled encoding scheme (4) followed by
backwards decoding, is given by convex hull of R1 and R2

that satisfy R1 = R10 + R12 and R2 = R20 + R21, where

R12 ≤ I(x12; y2|x2, u,h) (6)

R21 ≤ I(x21; y1|x1, u,h) (7)

R10 ≤ I(x1; y0|x2, x12, x21, u,h) (8)

R20 ≤ I(x2; y0|x1, x12, x21, u,h) (9)

R10 + R20 ≤ I(x1, x2; y0|x12, x21, u,h) (10)

R10 + R20 + R12 + R21 ≤ I(x1, x2; y0,h) (11)

The decoding delay can be significantly reduced if window
decoding, which was introduced by Carleial in [5], is used
instead of the backwards decoding. Window decoding has
recently been studied in more detail, mostly in the context
of relay channels, which are a special case of the MAC with
generalized feedback, with only one user having a message
to transmit to the destination. For relay channels, it has
been shown that window decoding achieves the same rate as
backwards decoding. Lately, Laneman and Gastpar [8] have
employed window decoding in conjunction with block Markov
encoding for an arbitrary MAC with generalized feedback,
and obtained the achievable rate regions under two schemes:
window decoding with and without stripping.

In window decoding, the decoding process begins after
a delay of one block, and is carried out using a sliding
window of two blocks: in block b, first the cooperation signal
u(w12(b − 1), w21(b − 1)) is decoded, and then the signal
received in the previous block b − 1 is used to completely
decode w12(b − 1), w21(b − 1), w10(b − 1) and w20(b − 1).
Depending on the order of decoding of these messages, the
process is called window decoding with stripping (where the
cooperation information, i.e., w12(b−1), w21(b−1) is decoded
first, subtracted from the received signal, and fresh information
is decoded afterwards); or window decoding without stripping
(where no specific decoding order is imposed).

Despite of its much improved delay performance, the draw-
back of window decoding is that, unlike backwards decoding,
the cooperative information u needs to be decoded first in the
presence of interference from other codeword components, i.e.,
the rates achievable for the cooperative part of the messages
w12 and w21 are in general potentially lower. This is due to
the extra constraints imposed by window decoding for reliable
decoding of the cooperative part of the message. For window
decoding with stripping, these constraints, which are required
in addition to the constraints for backwards decoding (6)-(11),
are given by

R12 ≤ I(u; y0) + I(x12; y0|x21, u,h) (12)

R21 ≤ I(u; y0) + I(x21; y0|x12, u,h) (13)

R12 + R21 ≤ I(u, x12, x21; y0, |h) (14)

If window decoding without striping is used instead, after
decoding u while treating all other components as interference,
the fresh information and remaining cooperation information

are decoded jointly, leading to the rate constraints

R12 + R10 ≤ I(u; y0) + I(x1; y0|x2, x21, u,h) (15)

R21 + R20 ≤ I(u; y0) + I(x2; y0|x1, x12, u,h) (16)

R12 + R10 + R20 ≤ I(u; y0) + I(u, x1, x2; y0, |x21,h) (17)

R21 + R10 + R20 ≤ I(u; y0) + I(u, x1, x2; y0, |x12,h) (18)

In what follows we will show that when our proposed power
controlled encoding scheme (4) is used, the maximum sum of
rates achievable by backwards decoding and window decoding
are the same. In order to achieve this, we first need to express
the rate constraints (6)-(18) in more detail in terms of the
power components and channel states. For convenience, we
define the effective channel gains normalized by the noise
powers as sij = hij/σ2

j . Also, for notational simplicity, we
further define

A = 1 + s10p1(h) + s20p2(h) + 2
√

s10s20pu1(h)pu2(h)
B = 1 + s10(p10(h) + p12(h)) + s20(p21(h) + p20(h))
C = 1 + s10p10(h) + s20p20(h)

Then, it can be shown by standard properties of mutual
information and entropy, and also by using standard results re-
garding the capacity of fading channels [9], that the achievable
rate region for window decoding with stripping is given by the
convex hull of rates R1 = R10 + R12 and R2 = R20 + R21,
which obey equations (19) through (27) ((19) through (24) and
(28) through (31) respectively for window decoding without
stripping):

R12 < E

[
log

(
1 +

s12p12(h)
s12p10(h) + 1

)]
(19)

R21 < E

[
log

(
1 +

s21p21(h)
s21p20(h) + 1

)]
(20)

R10 < E [log (1 + s10p10(h))] (21)

R20 < E [log (1 + s20p20(h))] (22)

R10 + R20 < E [log (C)] (23)

R1 + R2 < E [log (A)] (24)

R12 < E

[
log

(
A

B

)
+ log

(
C + s10p12(h)

C

)]
(25)

R21 < E

[
log

(
A

B

)
+ log

(
C + s20p21(h)

C

)]
(26)

R12 + R21 < E

[
log

(
A

C

)]
(27)

R1 < E

[
log

(
A

B

)
+ log (1 + s10(p10(h) + p12(h)))

]

(28)

R2 < E

[
log

(
A

B

)
+ log (1 + s20(p20(h) + p21(h)))

]

(29)

R1 + R20 < E

[
log

(
A

B

)
+ log (C + s10p12(h))

]
(30)

R2 + R10 < E

[
log

(
A

B

)
+ log (C + s20p21(h))

]
(31)
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IV. SUM RATE ACHIEVABLE BY WINDOW DECODING

The sum rate achievable by power controlled block Markov
encoding (4), followed by backwards decoding can be obtained
from equations (19)-(24), yielding (32) at the bottom of this
page.

We have shown in [4] that, the optimal power allocation
policy that maximizes the sum rate (32) has the following
property:

Proposition 1: [4] The power control policy p∗(h) that
maximizes (32), should satisfy

1) p∗10(h) = p∗20(h) = 0, if s12 > s10 and s21 > s20

2) p∗10(h) = p∗21(h) = 0, if s12 > s10 and s21 ≤ s20

3) p∗12(h) = p∗20(h) = 0, if s12 ≤ s10 and s21 > s20

4) p∗12(h) = p∗21(h) = 0
OR

p∗10(h) = p∗21(h) = 0, if s12 ≤ s10 and s21 ≤ s20

OR

p∗12(h) = p∗20(h) = 0
We will use this result to show that the sum rate optimal

power control policy for window decoding is identical to that
for backwards decoding, and both schemes achieve the same
sum rate. Our main result is stated in the following theorem.

Theorem 1: For a fading Gaussian multiple access channel
with two encoders employing the channel adaptive block
Markov superposition encoding given by (4), let the maximum
sum rates achievable by window decoding and backwards
decoding be denoted by R∗

w, and R∗
b, respectively. Then,

R∗
w = R∗

b. Furthermore, the maximum sum rates achievable
by window decoding with and without stripping are identical.

Let p∗(h) be the power control policy that maximizes the
sum rate Rb achievable by backwards decoding, given in (32).
We will prove Theorem 1 in two steps, using the following
two propositions.

Proposition 2: R∗
b � Rb(p∗(h)) ≥ Rw(p∗(h)).

Proof: Since the rate constraints for backwards decoding
are a subset of the constraints for window decoding, for any
valid power allocation policy p(h), Rb(p(h)) ≥ Rw(p(h)),
and the result follows directly by choosing p(h) = p(h)∗.

Proposition 3: Rb(p∗(h)) ≤ Rw(p∗(h)).
Proof: In our proof, we will focus on window decoding

with stripping, since it is a special case of window decod-
ing without stripping (with a specific decoding order), thus
giving a sum rate at best as high as the sum rate without
stripping. Hence, if we can prove the proposition for window
decoding with stripping, the result will automatically follow
for window decoding without stripping, which in general has
a larger achievable rate region. We first start by listing all
possible combinations of the constraints (19)-(27) (leaving out
constraints (21) and (22), which are always dominated by (23),

as far as sum rate is concerned) that will yield a bound on the
sum rate Rw:

i) (24)
ii) (19)+(20)+(23)

iii) (23)+(27)
iv) (23)+(25)+(26)
v) (19)+(23)+(26)

vi) (20)+(23)+(25)

We will show that the bounds obtained by adding each listed
set of equations are no tighter than the backwards decoding
bound (32), when optimal power allocation policy is used,
thereby proving Proposition 3.

i) The bound (24) is common to both backwards and window
decoding, and therefore automatically satisfies the proposition,
with equality.

ii) The bound (19)+(20)+(23) is also common to both
backwards and window decoding, and therefore automatically
satisfies the proposition, with equality.

iii) It is straightforward to check that the sum of right hand
sides of (23) and (27) yield the right hand side of (24), and
reduce to case i).

iv) Adding the right hand sides of the equations (23), (25)
and (26), we obtain

E

[
2 log

(
A

B

)
+ log

(
C + s10p12(h)

C

)

+ log
(

C + s20p21(h)
C

)
+ log(C)

]

≥ E

[
log

(
AC

B

)
+ log

(
C + s10p12(h) + s20p21(h)

C

)]

(33)

= E [log(A)] (34)

where, (33) follows from the concavity of the logarithm, and
the fact that we threw away a positive term, and (34) follows
by noting that the numerator of the second term in (33) is
B. Hence, the bound on the sum rate obtained in this case is
looser than log(A), i.e., the bound in case i).

v) Adding the right hand sides of the equations (19), (23)
and (26), we obtain

E

[
log

(
A

B

)
+ log

(
1 +

s12p12(h)
s12p10(h) + 1

)

+ log
(

C + s20p21(h)
C

)
+ log(C)

]
(35)

By comparing with cases i)-iv), one can see that this bound
is active only if its value is lower than log(A). Therefore,
simplifying and rearranging the terms, it is easy to see that

Rsum = min
{

E [log(A)] , E
[
log(C) + log

(
1 +

s12p12(h)
s12p10(h) + 1

)
+ log

(
1 +

s21p21(h)
s21p20(h) + 1

)]}
(32)
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the bound is active if

log
(

1 +
s12p12(h)

s12p10(h) + 1

)
< log

(
B

C + s20p21(h)

)
(36)

In obtaining (36) we have forced the arguments of the expec-
tations, rather than the expectations themselves, to be equal,
thereby imposing a stricter condition. Yet, in what follows, we
will see that this stricter condition is always satisfied.

Note that until now we have made no use of the properties
of the optimal power allocation policy given by Proposition
1. This means that, bounds in cases i)-iv) are all looser, or
equivalent, to the backwards decoding sum rate bound (32),
regardless of the power control policy being used. In case v),
we will need to use the fact that some components of p∗(h)
are always zero, depending on the relative channel qualities.

• Let s10 < s12 and s20 < s21, in which case p∗10(h) =
p∗20(h) = 0. Then, evaluating (36) at p∗(h), we get

log (1 + s12p12(h)) < log
(

1 +
s10p12(h)

1 + s20p21(h)

)
(37)

≤ log (1 + s10p12(h)) (38)

≤ log (1 + s12p12(h)) (39)

which is a contradiction, therefore, the bound is never
active if s10 < s12 and s20 < s21.

• Let s10 ≥ s12 and s20 < s21, in which case p∗12(h) =
p∗20(h) = 0. Then, it is easy to check that both sides of
(36) are equal to 0, the strict inequality is not satisfied,
and the sum rate is bounded by log(A) as in cases i)-iv).

• Let s10 < s12 and s20 ≥ s21 in which case p∗10(h) =
p∗21(h) = 0. Then, for the bound to be active, we need,

log (1 + s12p12(h)) < log
(

1 +
s10p12(h)

1 + s20p20(h)

)
(40)

which is never possible, since s10 < s12, and the bound
is loose.

• Let s10 ≥ s12 and s20 ≥ s21 in which case p∗12(h) =
p∗21(h) = 0 or p∗12(h) = p∗20(h) = 0 or p∗10(h) =
p∗21(h) = 0. It is easy to check that the first two possible
choices of powers give both sides of (36) equal to 0,
thereby yielding no tighter bounds. On the other hand,
we need to investigate the last choice in detail. In this
case, (36) reduces to

1 + s20p20(h) <
s10

s12
(41)

However, this condition cannot be satisfied for an optimal
p∗10(h), since, according to our derivations in [4], it is
equivalent to the partial derivative of the sum rate with
respect to p10 being always positive, which contradicts
the optimality of p∗10(h) = 0. Therefore, we have shown
that this rate constraint is also loose, and is dominated
by the sum rate constraint for backwards decoding.

vi) Finally, we note that case vi) is completely symmetric
with case v), and therefore the window decoding bound on the
sum rate is looser or at best equivalent to that for backwards
decoding.

The proof of Theorem 1 immediately follows by combining
Propositions 2 and 3.

V. CONCLUSIONS

In this paper, we have addressed the problem of comparing
the sum rates achievable by backwards decoding and window
decoding, for a fading Gaussian multiple access channel with
perfect channel state information at the transmitters and the
receiver. We have employed a power controlled block Markov
encoding scheme, followed by either backwards or window
decoding, and investigated the rates achievable by optimally
allocating the transmit powers for each codeword component
as a function of the channel states. Our results can be sum-
marized as follows:

1) Window decoding achieves the same sum rate as back-
wards decoding, when the powers are allocated optimally. This
result is extremely important, since using window decoding,
the decoding delay can be reduced from the B block delay of
the backwards decoding, down to only a single block of trans-
mission. Therefore, window decoding is always preferable as
far as the total information rate in the system is concerned.

2) Since window decoding with stripping achieves the same
maximum sum rate as backwards decoding, its more general
version, window decoding without stripping, also achieves the
same sum rate, therefore, under optimal power control, the
sum rates achievable by window decoding with and without
stripping are identical.

3) The sum rate maximizing power allocation policies for
backwards and window decoding are also identical, thus, at
any given channel state, two of the transmitted signal com-
ponents need to be assigned zero powers, thereby simplifying
the block Markov encoding strategy significantly.
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