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Abstract—We obtain the jointly optimal power allocation and
partner selection policies, that maximize the sum rate of a coop-
erative OFDMA system with mutually cooperating pairs of users.
We show that the power allocation and partner selection steps can
be performed sequentially, and the latter step can be formulated
as a maximum weighted matching problem on a undirected graph,
which can be solved in polynomial time. We further propose
practical algorithms, and compare their performances to the
optimal matching algorithm, and demonstrate that very simple
and low complexity algorithms based on user-user and user-
receiver distances may provide near-optimum rate performance.
Moreover, we observe that algorithms that achieve superiorsum-
rate performance, surprisingly also provide a better senseof
fairness for the cell edge users, as they tend to pair weak and
strong users.

I. I NTRODUCTION

The concept of cooperative communication arises naturally
in wireless channels, due to their propagative properties.The
users in a wireless network can overhear each other’s signals,
and with clever protocol design, they may aid each other’s
transmissions to combat the challenging channel conditions,
in order to achieve better performance. One of the pioneering
works, which demonstrated the potential gains from user co-
operation is [1], which deals with a two user fading Gaussian
MAC with overheard information. It was shown in [1] that the
users may increase their transmission rates considerably if they
cooperate, and that the improvement in rates depends highly
on the channel conditions in the system. In a practical wireless
network, the channel conditions for different user groups are
highly variable, based for example on location and mobility,
and hence, in order to benefit from user cooperation, one
has to select the cooperating partners efficiently. To this end,
several strategies for partner selection in wireless networks
have been developed in the literature. An SNR threshold
based partner selection algorithm was proposed in [2] in order
to reduce the error probability, or to increasing the system
throughput. A user location information based partner selection
algorithm using maximum weighted matching for an amplify-
and-forward relaying scheme was studied in [3] with the aim
of minimizing total system transmission power.

The models used while dealing with the partnering prob-
lem usually involve some form of orthogonality across the
user pairs, so that the pairs can cooperate without causing
interference to each other. OFDMA, which has gained a
lot of popularity in the recent years because of its several
desirable properties, is a good candidate for realizing practical
cooperation, due to its orthogonal structure. There is quite an
extensive amount of work on power and subchannel allocation
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schemes for OFDMA, some examples of which are [4], [5],
[6] and [7]. Yet, encoding techniques, and resource allocation
for mutually cooperative OFDMA systems, have not been in-
vestigated much until rather recently. For cooperative OFDMA
systems containing only two users, achievable rates based on
mutual cooperation across subchannels were characterizedin
[8], and for such systems, optimal power allocation algorithms,
which will also be used in this paper, was developed in [9].

Partner selection in OFDMA has also been considered re-
cently by several works in the literature. A related work [10]
deals with a system which uses amplify-and-forward relaying
scheme for OFDMA with only half-duplex user cooperation,
where the benefit of partner selection is observed in the formof
a significant reduction of total transmission power. The partner
selection algorithm proposed in [11] applies a game theoretical
approach on selecting partners for OFDMA systems.

In this paper, we deal with a model which combines the
frequency diversity created by OFDMA, the spatial diversity
created by multiple users, and the time diversity created by
the time varying channel, and our main purpose is obtain
the optimal partner selection algorithm, which, when used
in conjunction with power allocation proposed in [9], will
maximize the total transmission rate in the system.

We first decouple the jointly optimal power allocation and
partner selection algorithm into two components, and refor-
mulate the partner selection problem as a maximum weighted
matching problem from graph theory. We obtain the optimal
partnering pattern, and the resulting achievable rates. Byan-
alyzing the structure of the optimum partnering strategy, we
design simple, yet efficient heuristic partnering algorithms,
and compare their performances to the optimal algorithm. We
observe that, especially one of the algorithms designed to
mimic maximum weighted matching, solely based on distance
properties of the network, provides near-optimal rates. The best
partnering algorithms tend to pair the users far away from the
receiver, with those close to the receiver, in order to maximize
the sum rate of the overall system.

II. SYSTEM MODEL

We consider a fading Gaussian multiple access channel, with
N users randomly distributed over a disk of radiusR, where
N is even. The receiver is assumed to be at the center of the
circular cell. The users employ OFDMA in their transmissions,
and also cooperate in pairs. Each cooperating pair, say{i, j}
where i ∈ {1, . . . , N}, j ∈ {1, . . . , N} and i 6= j, is
assignedM orthogonal subchannelsSij ⊂ {1, . . . , NM/2}.
This subchannel assignment is assumed to be made once, and
is fixed throughout the transmission. We make no restrictive
assumptions about the connectivity of the nodes, and consider
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all possible pairing combinations among all nodes; which also
contains as special cases possible limited connectivity models.
For each cooperating pair{i, j}, the signals received by the
usersi, j and the receiver (denoted by index 0), over each
subchannels ∈ Sij , are respectively given by,
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. The symbolsX(s)

i

and X
(s)
j denote the codewords trasmitted by usersi and j.

The fading over each subchannel is assumed to be independent
and identically Rayleigh distributed. Hence, the instantaneous
power fading coefficientsh(s)

ij , h
(s)
ji , h

(s)
i0 and h

(s)
j0 are i.i.d.

exponential random variables. We assume that full channel state
information, which we callh, is available at each user pair
and the receiver (instantaneous channel state informationof
users in other pairs will not be needed, once pairing is done
based on the channel statistics.) The symbolsdij , di0 anddj0

denote the useri to userj, user i to receiver and userj to
receiver distances respectively; andα denotes the path loss
exponent. The self interference due to full duplex operation
over each subchannel is removed by subtracting appropriately
scaled versions ofX(s)

i andX
(s)
j from (1) and (2) respectively.

We employ mutual cooperation, i.e., both users involved in
a cooperating pair decode and forward each other’s messages,
using the inter-subchannel cooperative encoding protocolin-
troduced in [8]. Furthermore, each user is able to utilize the
available channel state information to perform power control,
in order to maximize the cooperating pair’s sum rate, as in [9].
Accordingly, the transmitted codewords of usersi and j over
each subchannels are formed using [9],
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The component codewordsX(s)
i0 , X

(s)
ji andU (s) defined in (4),

are used for direct transmission, common message generation,
and cooperation purposes respectively. The variablesp
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i0 (h),

p
(s)
ij (h) andp
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Ui

(h) simply denote the channel adaptive powers
assigned to these codewords. The definitions for userj follow

similarly. The powers of both users in the cooperating pair
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The decoding at the receiver is performed using backwards
decoding [1]. Extending the rate regions obtained in [9], to
include the path loss based on inter-user and user-receiver
distances, it is easy to show that the achievable sum rate
for each cooperating pair, employing power adaptive inter-
subchannel cooperative encoding, is given by the constraint
(6) at the top of this page.

III. SUM-RATE-OPTIMAL PARTNERING ALGORITHM

In this section, we formulate and solve the jointly optimal
power control and partner selection problem for the cooperative
OFDMA system modeled in Section II. The objective is
to maximize the overall sum rate of the entire system, by
optimally pairing the users. Let us denote byΓ the set of all
possible 2-user partitions of the set{1, . . . , N} of users. To
find the number of all possible 2-user partitions, consider the
following approach. Fix an arbitrary usern1 ∈ {1, . . . , N}.
There areN − 1 possible partnersn′

1 ∈ {1, . . . , N} \ {n1},
for n1. Once we select the partnern′

1, and removen1 andn′
1

from the set of users, we haveN − 2 users remaining. Fix
another usern2 ∈ {1, . . . , N} \ {n1, n

′
1}, for which there are

N − 3 possible partners. Repeating the same procedure until
all partnerings are made, the number of all possible 2-user
partitions can be found by,

L =

N/2
∏

n=1

(N − 2n + 1). (7)

Let Γl denote thelth 2-user partition ofΓ, wherel ∈ 1, . . . , L,
andp(h) denote the vector of powers of all users, containing
as its elements the non-negative powersp
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Ri + Rj satisfy (6), ∀{i, j} ∈ Γl. (8)
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Fig. 1. 4-user OFDMA system model, with pairwise cooperation.

In its present form, (8) seems rather difficult to solve, as
the rates, which form the objective function for power op-
timization, depend on the selected partnering strategy, while
the partnering strategy that needs to be selected depends on
the rates. Therefore, before we proceed, it is instructive to
introduce a simple 4-user example, depicted in Figure 1, which
will shed some light into the solution of the general problem. In
Figure 1, all possible links which can be used for cooperation
among all possible pairs are shown. Here, as suggested by
(7) there are only three possible 2-user partitions of the set
of users:{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}} and{{1, 4}, {2, 3}}.
The crucial observation is that, once one of these partitions
is fixed, the sum rate of each pair in that partition depends
solely on the channel gains on the subchannels used by that
particular pair, and is not affected by the transmission policy of
the remaining pair, thanks to the orthogonal nature of OFDMA.
But then, since each pair’s transmission rate is independent of
the other, we can simply find the optimal power allocation, and
the resulting sum rate separately for each pair, for each given
partition. Afterwards, the optimal partition can be selected
by performing a search over theL power optimized sum-
rate values. This argument is obviously valid for an arbitrary
number of pairs as well: going back to our original problem,
our optimization problem (8) can be equivalently stated as a
two step problem
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which can further be converted into

max
Γl∈Γ,

∑

{i,j}∈Γl

(Ri + Rj)
∗, (10)

where (Ri + Rj)
∗ is the power optimized sum rate of pair

{i, j}, obtained by running the iterative algorithm proposed in
[9]. While (10) is considerably simpler than (8), a brute force
search over all possible partnering strategies would require
factorial time, as evident from (7). However, given the sum
rates achievable by each possible partnering, it is possible to
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Fig. 2. 4-node undirected graph equivalent of the system in Figure 1

model (10) as an equivalent matching problem in graph theory.
Let us go back to our simple 4-user example, and create a
complete undirected graph, where the users are the vertices, and
the weights over the edges are the sum rate that is achievableby
the pair of users connected by that particular edge, in case they
are paired. The resulting graph is shown in Figure 2. In order
to create all the weight information in this example, we need
to compute six sum rates, each corresponding to one possible
pair of users. However, note that since there are 4 users in
this graph, we can simultaneously choose only 2 disjoint pairs,
and the pairs for which the summation of the corresponding
weights is maximized should be found. This problem is known
as ”maximum weighted matching” in graph theory, which can
be solved by an efficient algorithm presented in [12].

The worst-case complexity of the maximum weighted match-
ing algorithm isO(N3) [12]. Meanwhile, for a general system
with N users, the complete graph consisting of all possible
pairings of users contains onlyN × (N − 1)/2 edges. Since
the cost of finding the weights(Ri + Rj)

∗ on each edge
based on power optimization is constant, the overall cost of
generating the graph becomes negligible, compared to the
cost of weighted matching asN grows. Note however that,
for moderate number of users, which is typical in a wireless
network, the fixed cost of computing these weights using
iterative power optimization may become a time consuming
computational burden. In practical networks, users are not
necessarily stationary, and the topology of the network, and
hence the channel conditions, may change frequently. Every
time the topology changes, we may need a new matching.
Therefore, in the next section, we propose alternative matching
algorithms with the aim of obtaining even faster and more
practical results.

IV. PRACTICAL SUBOPTIMAL PAIRING ALGORITHMS

In our model, the locations of the users, and their distances
to each other are the major factors that effect their transmission
rates. The impacts of Rayleigh fading and noise variances
on the rates are negligible in comparison to path loss. This
forces the power allocation and partner selection to be mostly
dependent on the topology of the network, which means that a
suboptimal but fast algorithm can be derived based only on user
locations as an alternative to the maximum weighted matching



algorithm. But then, the weights of the graph will not be needed
to match the users, and this will decrease the time consumed
by the matching algorithm drastically.

When we seek ways of utilizing user locations directly in
partnering decisions, two contrasting approaches immediately
come to mind: (i) the users close to each other being grouped
together, and, (ii) the users at a disadvantage being grouped
with users with stronger links. Also, it is clear that the partner-
ing should depend on the user-receiver distances as well as the
inter-user distances, hence it is of interest to see whetherone
should group the users starting with the nearest to or farthest
from the receiver. Therefore, in what follows, we propose five
algorithms that make partnering decisions based on differing
criteria based on the relative locations of the users.

A. Select Nearest to Receiver

The two users nearest to the receiver get matched. These
users are removed from the pool, and the algorithm repeatedly
matches the rest of users with the same method until every user
is matched.

B. Select Farthest from Receiver

The two user farthest from the receiver get matched. These
users are removed from the pool, and the algorithm repeatedly
matches the rest of users with the same method until every user
is matched.

C. Maximum Matching on Nearest Four to Receiver

The user nearest to the receiver is selected. Then, three
users which are nearest to it are selected. Maximum weighted
matching algorithm runs on those users and the users get
matched. The algorithm repeatedly matches the rest of users
with the same method until every user is matched.

D. Maximum Matching on Farthest Four from Receiver

The user farthest from the receiver is selected. Then, three
users which are nearest to it are selected. Maximum weighted
matching algorithm runs on those users and the users get
matched. The algorithm repeatedly matches the rest of users
with the same method until every user is matched.

E. Select Nearest and Farthest to Receiver

The user farthest to the receiver gets matched with the
nearest to the receiver. These users are removed from the pool,
and the algorithm repeatedly matches the rest of users with the
same method until every user is matched.

The performance comparisons of the above algorithms are
presented in the following section.

V. SIMULATION RESULTS

Fifty runs were taken from each of the algorithms proposed
in Section IV, as well as from the weighted matching algorithm
described in Section III. In the simulations,N = 20 users
were placed in a disk with radiusR = 100m according to a
uniform random distribution. The receiver was placed at the
center of the disk. All of the users had the same transmission
power and the same numberM = 3 of Rayleigh fading
subchannels. The path loss exponent in the simulations were
set toα = 2. The noise variances were normalized to unity.

TABLE I
TRANSMISSION RATES OF PAIRS OBTAINED BY A SAMPLE RUN OF

PROPOSED ALGORITHMS

Pair MWM AlgoA AlgoB AlgoC AlgoD AlgoE
1 17.084 21.045 19.439 21.045 17.926 17.078
2 16.618 19.596 18.133 18.062 17.731 16.621
3 16.414 13.073 16.649 15.336 16.727 16.410
4 14.924 10.064 13.073 11.534 16.417 14.911
5 10.683 4.833 5.484 4.833 7.164 10.683
6 8.716 3.906 4.388 3.798 3.906 8.657
7 7.938 3.451 3.906 3.496 3.451 7.760
8 7.164 3.074 3.496 2.793 3.074 5.111
9 3.906 2.841 2.841 2.642 2.865 4.833
10 3.596 2.329 2.793 2.706 2.858 4.429
Total 107.043 84.211 90.202 86.245 92.117 106.494

Users’ transmission power before path loss and fading was
set to P = 104. The simulations for lower signal to noise
ratios (SNR) also yield similar relative performance results for
the algorithms, although with decreasing SNR, the differences
between the performances of the proposed algorithms become
less pronounced. In Table I, a detailed comparison of the rates
achieved by each cooperating pair is given for a sample run
of all algorithms. We observe that, if the users close to the
receiver are coupled first, these users’ transmission ratesare
high, however the farther users’ rates are so low that, the
total is not as much as one can obtain by a more nearly
equal distribution. This is the main problem encountered in
Algorithm A. The same also applies to Algorithm B with a
little bit of difference. The users farther away from the receiver
are selected as close as possible to each other, however, since
the SNR goes down because of the path loss, the cooperation
gain is still low for these users, and total rate becomes low.It is
noteworthy that, algorithm B gives better results than algorithm
A. Algorithm E, which is inspired by the optimal matching,
performs surprisingly well.

In Figure 3, the matchings created by the algorithms are
visually compared to maximum weighted matching. It is ob-
served that, maximum weighted matching generally selects
pairs such that, one of the users in the pair is close to the
receiver, while the other user is far away from the receiver.
This is rather surprising in that, the pairing that is optimal for
the benefit of the entire system also happens to match users
with best channel conditions with those with worst channel
conditions. The achievable rates of the proposed algorithms are
compared to the total transmission rate of maximum weighted
matching, by defining the ratio of the sum rate achievable by
each algorithm to the optimal sum rate of weighted matching
in the form of a percentage, which we call the efficiency. We
observe that, Algorithm E creates a matching which is closes
to the maximum weighted matching, and hence achieves the
best efficiency.

In Table II, we provide the statistics of the efficiencies of
our proposed algorithms. In our simulations, the efficiencies of
the algorithms A and B are between 75% and 95%. Algorithms
C and D include maximum weighted matching for subgroups
of users as a subroutine, but they are still fast algorithms since
subgroups include small numbers of users. Algorithm D gives
better results than C, with efficiencies between 80% and 99%.
Algorithm E is the best among the proposed heuristic algo-
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Fig. 3. User constellations, maximum matching and matchings created by different proposed algorithms.

TABLE II
STATISTICS OF PROPOSED ALGORITHMS

Efficiencies AlgoA AlgoB AlgoC AlgoD AlgoE
min 76.994 83.379 78.735 85.114 94.337
max 95.864 96.953 97.225 99.551 99.655
mean 87.109 90.483 88.874 94.236 97.527

rithms in terms of efficiency, with efficiencies between 94%
and 99%. Since one closer and one further user is paired with
each other, for most user pairs, cooperative gain is average,
but in total, this converges to the maximum transmission rate.
Also, there is no maximum weighted matching routine in this
algorithm, making it much faster.

VI. CONCLUSION

Partner selection in wireless networks is a key consideration
in rate maximization for cooperative networks. In this paper,
we formulated the joint power allocation and partner selection
problem, with the goal of maximizing the sum-rate of a
cooperative OFDMA network. It is shown that, the problem
can be reduced into a maximum weighted matching problem
which has a polynomial time solution. The result of the
maximum weighted matching algorithm, inspired us to develop
some heuristic algorithms with lower complexity. Hence, to
further simplify the partnering problem, we proposed matching
algorithms which only use the location information of the
users. We demonstrated that, the algorithm which matches the
users farthest away from the receiver to the ones closest to the
receiver, gives a near-optimum solution, very fast.
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