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Introduction

Information theoretic analysis of communication systems

• Provides a benchmark for system performance – fundamental limits

– E.g., “how close are we to channel capacity achievable by anyscheme?”

• Gives direction to future research

– It tells you what could still be achieved.

– It suggests new ways to push your limits

∗ E.g., use of multiple antennas, user cooperation, etc.

• Though strictly theoretical, gives insight to practical algorithms and applications

– E.g., how to do encoding, decoding, resource allocation, medium access, etc.
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Channel Capacity
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• The channel is memoryless ifP(Yn|Xn) = ∏n
i=1P(Y|X).

• A communication channel has capacityC, if

– Any rateR< C can be transmitted reliably (i.e., with arbitrarily low probability of error).

– Any rateR> C is guaranteed to have probability of error bounded away fromzero.

• Achieved by using a random coding argument.

C = max
p(x)

I(X;Y)

• p(x) is the marginal distribution of the random variableX.

• I(X;Y) is the mutual information betweenX andY, i.e., the reduction of uncertainty aboutX

upon observingY.
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Channel Capacity
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Gaussian Channel
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Y[i] = X[i]+N[i], i = 1, ...,N (1)

• For Gaussian channels with signal powerP and noise varianceσ2, the capacity is given by

C =
1
2

log

(

1+
P
σ2

)

• To achieve capacity, the codewordXn is taken from a codebook generated randomly,

– Each symbol in the sequenceXn is i.i.d Gaussian, i.e.,X ∼ N (0,P).

• The capacity is achieved as the codeword lengthn→ ∞

• Decoding is performed based on jointly typical sequences.
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Multiple Access Channels
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• Multiple sources convey independent messages to the same receiver.

– E.g., uplink of a cellular system, all mobiles send data to the base station.

• The rates achievable by users is worse than their single userperformance due to interference.

6



Capacity Region of the Gaussian MAC
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• Region of achievable rates rather than a single rate value.

• The capacity region is a pentagon

• The rate of a user can be increased up to its single user limit,in expense of rate of other user.

• Corners of the boundary can be achieved by successive decoding.
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Fading
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• Fading:random fluctuations in the channel.

• Known statistics and the realization of the fading⇒ opportunistic resource allocation.

• Power control

– Quality of service based (instantaneous requirements)

– Capacity based (long term requirements)

• We are interested in long term capacities of systems with average power constraints.
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Single User Channel (Goldsmith-Varaiya 1994)

• Channel capacity for single user

C =
1
2

log
(

1+
p

σ2

)

• In the presence of fading, for a fixed channel stateh

y =
√

p(h)hx+n

C(h) =
1
2

log

(

1+
p(h)h

σ2

)

• Maximize the ergodic capacity, given an average power constraint

max
{p(h)}

Eh

[

log

(

1+
p(h)h

σ2

)]

s.t. Eh [p(h)] ≤ p̄, p(h) ≥ 0
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Single User Channel Solution-Waterfilling

• Optimal power allocation:waterfillingof power over time

p(h) =

(
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• More power to better channel states; no power to very poor channel states
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Multiuser Scalar Gaussian Channel (Knopp-Humblet 1995)

• The received signal

y =
K

∑
i=1

√

pi(h)hixi +n

• Region of achievable rates instead of a single capacity.

• Maximize ergodicsum capacity, given average power constraints

max
{pi(h)}

Eh

[

1
2

log

(

1+σ−2
K

∑
i=1

hi pi(h)

)]

s.t. Eh [pi(h)] ≤ p̄i , pi(h) ≥ 0, i = 1, · · · ,K

• Optimal power allocation: single user waterfilling on disjoint sets of channel states

pk(h) =







(

1
λk
− σ2

hk

)+
, if hk/λk > h j/λ j , ∀ j 6= k

0, otherwise

• Only the strongest user transmits at any given time. More than one user transmit w.p. 0.
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Optimum Power Allocation: Scalar Multiuser Channel
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Capacity Region of Fading Scalar MAC with CSI (Hanly-Tse 98)

• Union of rate regions (polymatroids) achievable by all valid power control policies.

⋃

{p(h): Eh[pi(h)]≤p̄i , ∀i}

{

R : ∑
i∈Γ

Ri ≤ Eh

[

1
2

log

(

1+σ−2 ∑
i∈Γ

hi pi(h)

)]

, ∀Γ ⊂ {1, · · · ,K}
}

R2

R1
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Properties of the Capacity Region
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• The power control policy that corresponds to the rate pair(R∗
1,R

∗
2) can be found by

maximizingµ1R1 +µ2R2 subject to the average power constraints, for someµ1, µ2.

• Any (R∗
1,R

∗
2) on the curved portion of the boundary is a corner of one of the pentagons.
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Optimum Power allocation
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• Can be obtained by a greedy algorithm [Hanly-Tse 98], or by using generalized iterative

waterfilling [Kaya-Ulukus 2006].

• Has a simultaneous waterfilling nature.
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User Cooperation
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n
Y0 = h10X1 +h20X2 +n0

Y1 = h21X2 +n1

Y2 = h12X1 +n2

• Interferenceis information.

• Some versions of all transmitted signals are received by allnodes.

• User cooperation: exploit overheard information to jointly design encoding, transmit,

routing policies.

• Building block towards the analysis of larger networks.
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Motivation
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Motivation
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Optimum Power Allocation for the Two User Cooperative MAC
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• Joint work with Sennur Ulukus
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MAC with Generalized Feedback

• Gaussian MAC with cooperating encoders [Sendonaris, Erkip, Aazhang]

– Special case ofMAC with generalized feedback[Willems, van der Meulen, Schalkwijk]

• An achievable rate region is obtained by employing

– Block Markov superposition encoding

∗ Inject high rate fresh information to be resolved with the help of upcoming blocks.

∗ Send resolution information for previous blocks.

– Backward decoding

∗ After receiving all blocks, decode the resolution information in the last block.

∗ Using previously decoded resolution information, sequentially decode earlier blocks.
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Gaussian MAC with User Cooperation – No Resource Allocation
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No Cooperation/No PC Block Markov superposition coding

• Build common information(X12,X21)

• Cooperatively send(U)

• Inject new information(X10,X20)

X1 =
√

p10X10+
√

p12X12+
√

pu1U

X2 =
√

p20X20+
√

p21X21+
√

pu2U

• Amplitude of the each channel’s gain is assumed to be known atthe corresponding receiver.

• Phases of all channel gains are assumed known at the receiverand the transmitters

– Coherent combining.
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Gaussian MAC with User Cooperation – Resource Allocation
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• Build common information(X12,X21)

• Cooperatively send(U)

• Inject new information(X10,X20)

X1 =
√

p10(h)X10+
√

p12(h)X12+
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pu1(h)U

X2 =
√

p20(h)X20+
√

p21(h)X21+
√

pu2(h)U

• Complete channel state information at the transmitters andthe receiver.

• Transmitted codewords can be modulated by channel adaptivepower levels

– Opportunistic cooperation and transmission – use available average power efficiently.
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Gaussian MAC with User Cooperation – Resource Allocation
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Block Markov superposition coding

• Build common information(X12,X21)

• Cooperatively send(U)

• Inject new information(X10,X20)

X1 =
√

p10(h)X10

X2 =
√

p20(h)X20

• Complete channel state information at the transmitters andthe receiver.

• Transmitted codewords can be modulated by channel adaptivepower levels

– Opportunistic cooperation and transmission – use available average power efficiently.
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Gaussian MAC with User Cooperation – Resource Allocation
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Block Markov superposition coding

• Build common information(X12,X21)

• Cooperatively send(U)

• Inject new information(X10,X20)

X1 =
√

p10(h)X10

X2 =
√

p20(h)X20

• Complete channel state information at the transmitters andthe receiver.

• Transmitted codewords can be modulated by channel adaptivepower levels

– Opportunistic cooperation and transmission – use available average power efficiently.
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Gaussian MAC with User Cooperation – Resource Allocation
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Block Markov superposition coding

• Build common information(X12,X21)

• Cooperatively send(U)

• Inject new information(X10,X20)

X1 =
√

p10(h)X10+
√

p12(h)X12+
√

pu1(h)U

X2 =
√

p20(h)X20+
√

p21(h)X21+
√

pu2(h)U

• Complete channel state information at the transmitters andthe receiver.

• Transmitted codewords can be modulated by channel adaptivepower levels

– Opportunistic cooperation and transmission – use available average power efficiently.
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Achievable Region of Rates with Power Control

• Union over all valid policiesE[pi0(h)+ pi j (h)+ pUi (h)] ≤ p̄i of pairs{R1,R2} that satisfy

R1 < E

[

log

(

1+
h12p12(h)

h12p10(h)+σ2
2

)

+ log

(

1+
h10p10(h)

σ2
0

)]

R2 < E

[

log

(

1+
h21p21(h)

h21p20(h)+σ2
1

)

+ log

(

1+
h20p20(h)

σ2
0

)]

R1 +R2 < min

{

E

[

log

(

1+
h10p1(h)+h20p2(h)+2

√

h10h20pU1(h)pU2(h)

σ2
0

)]

,

E

[

log

(

1+
h12p12(h)

h12p10(h)+σ2
2

)

+ log

(

1+
h21p21(h)

h21p20(h)+σ2
1

)

+ log

(

1+
h10p10(h)+h20p20(h)

σ2
0

)]}

• Bounds not concave in power vectorp(h) = [p10(h) p12(h) pU1(h) p20(h) p21(h) pU2(h)]
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Properties of Sum-Rate-Optimal Power Allocation

Proposition 1 Let the effective channel gains normalized by the noise powers be defined as

si j = hi j /σ2
j . Then, for the power control policyp∗(h) that maximizes the sum rate, we need

• p∗10(h) = p∗20(h) = 0, if s12 > s10 ands21 > s20

• p∗10(h) = p∗21(h) = 0, if s12 > s10 ands21 ≤ s20

• p∗12(h) = p∗20(h) = 0, if s12 ≤ s10 ands21 > s20

•

p∗12(h) = p∗21(h) = 0

OR

p∗10(h) = p∗21(h) = 0

OR

p∗12(h) = p∗20(h) = 0







































if s12 ≤ s10 ands21 ≤ s20
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Implications of the Optimal Power Allocation

• Block Markov superposition coding is simpler than originally thought.

– Each transmitter either sends a cooperation signal or freshinformation, but not both!

• The choice at each channel state “only” depends on the channel state.

– Channel statistics, power constraints play no role in deciding which signals to transmit.

– Except for the tiny little last case... which usually has very insignificant probability.

• The achivable rate expressions are greatly simplified,and are now concave.

• This simplified coding policy not only maximizes the sum rate, but also the individual rate

constrains onR1 andR2, and isoptimal in terms of the entire rate region.

• Concave optimization problem over a convex constraint set,but non-differentiable.
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Simplified Rate Region – Example

• Assumes12 > s10, s21 > s20 to illustrate the simplified rate region.

R1 < E [log(1+s12p12(h))]

R2 < E [log(1+s21p21(h))]

R1 +R2 < min

{

E

[

log

(

1+s10p1(h)+s20p2(h)+2
√

s10s20pU1(h)pU2(h)

)]

,

E

[

log(1+s12p12(h))+ log(1+s21p21(h))

]}

• Inequalities define either a pentagon like in the traditional MAC, or a triangle.

• All bounds concave in powers, and so is any weighted sumµ1R1 +µ2R2 at the corners.

• Sum rate not differentiable where the arguments of the min are equal.
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Rate Maximization Using Subgradient Method

• Points on the rate region boundary can be obtained by maximizingCµµµ = µ1R1 +µ2R2.

• The optimization problem for arbitrary prioritiesµ1 andµ2 is given by

max
p(h)

µ1R1 +µ2R2

s.t.E3,4 [p10(h)]+E1,2 [p12(h)]+E [pU1(h)] ≤ p̄1

E2,4 [p20(h)]+E1,3 [p21(h)]+E [pU2(h)] ≤ p̄2

• {R1,R2} is the corner of the pentagon obtained for a given power allocation policy.

• Gradient of the objective function does not exist everywhere, find subgradientg instead

Cµµµ(p′) ≤Cµµµ(p)+(p′−p)g

• Use projected subgradient method to maximizeCµµµ

p(k+1) = [p(k)+αkgk]
+

• Provably converges for a diminishing stepsizeαk [Shor].
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Convergence of the Projected Subgradient Algorithm
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• Rate of convergence depends on the stepsize parameter.

• Subgradient method need not give a monotonically increasing function value.
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Achievable Rate Region for Joint Power Control and User Cooperation
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• Optimized power levels enlarge the achievable rate region significantly.
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Summary and Conclusions

• Characterized the power control policies that are jointly optimal with Block Markov

superposition coding.

• Using sub-gradient methods, obtained optimal power levelsand corresponding rate region.

• Joint usage ofcooperative diversityandtime diversity: major improvements in capacity.

• Encoding and decoding is significantly simplified.

– Transmitters send either cooperation or fresh informationsignals, but noth both.

• Optimal power policies also dictate MAC and routing policies

– Cross layer design.
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Two User Cooperative OFDMA

• *Joint work with Sezi Bakım
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OFDMA
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• Divides the entire transmission bandwidth intoN orthogonal subchannels.

• Converts a frequency selective fading channel into parallel flat fading subchannels.

• Createsdiversityacross subchannels.

• Avoids interference, but incurs rate penalty due to orthogonalization of transmissions.
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User Cooperation

h 10
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h 20User 2

User 1

Receiver21
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Z 0

Z 1

Z 2

h

Y0 =
√

h10X1 +
√

h20X2 +Z0

Y1 =
√

h21X2 +Z1

Y2 =
√

h12X1 +Z2

• Interferenceis information.

• Why not take advantage of overheard information in OFDMA?

39



Two User Cooperative OFDMA Channel Model
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• Equivalent toN orthogonal cooperative MACs.

• Both users may TX & RX on the same subchannel: makes use ofoverheard information.

• May cooperate independently over each subchannel (intra-subchannel cooperation),

• May cooperate across subchannels (inter-subchannel cooperation).
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Two User Cooperative OFDMA Channel Model
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Scalar MAC – Block Markov Superposition Encoding

• Two user cooperation: each user’s message is divided intotwo sub-messages

– w1 = (w10,w12), w2 = (w20,w21)

• Block Markov superposition coding

Purpose Codeword

Build common information Xk j
(

wk j[b],wk j[b−1], ŵ jk[b−1]
)

Cooperatively send Uk
(

wk j[b−1], ŵ jk[b−1]
)

Inject new information Xk0
(

wk0[b],wk j[b−1], ŵ jk[b−1]
)

X1 =
√

p10X10+
√

p12X12+
√

pU1U1

X2 =
√

p20X20+
√

p21X21+
√

pU2U2

pk0 + pk j + pUk = Pk
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OFDMA: Intra Subchannel Cooperative Encoding

• Two user cooperation: each user’s message is divided intotwo sub-messages

– w1 = (w10,w12), w2 = (w20,w21)

• These two sub-messages are furtherdivided intoN submessageseach

– wk0 =
{

w(1)
k0 , ...,w(N)

k0

}

, wk j =
{

w(1)
k j , ...,w(N)

k j

}

• Block Markov superposition coding

Purpose Codeword

Build common information X(i)
k j

(

w(i)
k j [b],w(i)

k j [b−1], ŵ(i)
jk [b−1]

)

Cooperatively send U (i)
k

(

w(i)
k j [b−1], ŵ(i)

jk [b−1]
)

Inject new information X(i)
k0

(

w(i)
k0[b],w(i)

k j [b−1], ŵ(i)
jk [b−1]

)

X(i)
1 =

√

p(i)
10X(i)

10 +

√

p(i)
12X(i)

12 +

√

p(i)
U1

U (i)
1

X(i)
2 =

√

p(i)
20X(i)

20 +

√

p(i)
21X(i)

21 +

√

p(i)
U2

U (i)
2

N

∑
i=1

p(i)
k0 + p(i)

k j + p(i)
Uk = Pk
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Intra-Subchannel Cooperative Encoding – Rate Constraints

• Rate constraints for reliable decoding at users:

R(i)
12 < E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

R(i)
21 < E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

• Rate constraints for reliable decoding at receiver:

R(i)
10 < E

[

log
(

1+s(i)
10p(i)

10

)]

R(i)
20 < E

[

log
(

1+s(i)
20p(i)

20

)]

R(i)
10 +R(i)

20 < E
[

log
(

1+s(i)
10p(i)

10 +s(i)
20p(i)

20

)]

R(i)
12 +R(i)

21 +R(i)
10 +R(i)

20 < C(i)
s , E

[

log

(

1+s(i)
10p(i)

1 +s(i)
20p(i)

2 +2
√

s(i)
10s(i)

20p(i)
u1 p(i)

u2

)]
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Intra-Subchannel Cooperative Encoding: Issues and Limitations

R1 < ∑
i

min

{

E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

+E
[

log
(

1+s(i)
10p(i)

10

)]

,C(i)
s

}

R2 < ∑
i

min

{

E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

+E
[

log
(

1+s(i)
20p(i)

20

)]

,C(i)
s

}

R1 +R2 < ∑
i

min

{

C(i)
s ,E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

+E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

+ E
[

log
(

1+s(i)
10p(i)

10 +s(i)
20p(i)

20

)]}

• Each submessage is retransmitted over the same subchannel it was received on.

• Does not take advantage of diversity created by OFDMA.

• Rate over each subchannel is limited by the worst link.
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Inter-Subchannel Cooperative Encoding

• Can re-partition and re-encode the overall message received over the subchannels:

– wk j can be divided into new submessages with ratesR
′(i)
k j

∗ w12 =
{

v(1)
12 , ...,v(N)

12

}

, w21 =
{

v(1)
21 , ...,v(N)

21

}

•
{

w(i)
k j

}N

i=1
and

{

v(i)
k j

}N

i=1
, are just different partitionings of the same messagewk j, so their

total rates have to be the same:

2nR12 = 2nR
(1)
12 +...+nR

(N)
12 = 2nR

′(1)
12 +...+nR

′(N)
12 ,

2nR21 = 2nR
(1)
21 +...+nR

(N)
21 = 2nR

′(1)
21 +...+nR

′(N)
21 .

• Re-encode the new partition onto the subchannels

– The information received over a subchannel no longer required to be sent over the same

subchannel.

46



Inter-Subchannel Cooperative Encoding – Message Repartitioning
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Inter-Subchannel Cooperation: Encoding and Decoding

• Encoding

Purpose Codeword

Build common information X(i)
k j

(

w(i)
k j [b],v(i)

k j [b−1], v̂(i)
jk [b−1]

)

Cooperatively send U (i)
k

(

v(i)
k j [b−1], v̂(i)

jk [b−1]
)

Inject new information X(i)
k0

(

w(i)
k0[b],v(i)

k j [b−1], v̂(i)
jk [b−1]

)

• Decoding

– Each user uses joint typicality check at the end of each block.

– Receiver uses backwards decoding to determine the transmitted messages

∗ For each subchannel determine ˜v(i)
21[b−1], ṽ(i)

12[b−1], w̃(i)
10[b] andw̃(i)

20[b]

∗ Estimates of the re-partitioned cooperative messages ˜v(i)
k j [b−1] are converted to

estimates of the cooperative messages ˜w(i)
k j [b−1] via match-up table available at the

users and the receiver.
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Inter-Subchannel Cooperative Encoding – Rate Constraints

• Rate constraints for reliable decoding at users:

R(i)
12 < E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

R(i)
21 < E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

• Rate constraints for reliable decoding at receiver:

R(i)
10 < E

[

log
(

1+s(i)
10p(i)

10

)]

R(i)
20 < E

[

log
(

1+s(i)
20p(i)

20

)]

R(i)
10 +R(i)

20 < E
[

log
(

1+s(i)
10p(i)

10 +s(i)
20p(i)

20

)]

R
′(i)
12 +R

′(i)
21 +R(i)

10 +R(i)
20 < C(i)

s , E

[

log

(

1+s(i)
10p(i)

1 +s(i)
20p(i)

2 +2
√

s(i)
10s(i)

20p(i)
u1 p(i)

u2

)]
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Inter-Subchannel Cooperative Encoding - Achievable Rate Region

• Achievable rate region is equivalent to the closure of the convex hull of all rate pairs:

R1 < ∑
i

E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

+E
[

log
(

1+s(i)
10p(i)

10

)]

R2 < ∑
i

E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

+E
[

log
(

1+s(i)
20p(i)

20

)]

R1 +R2 < min

{

∑
i

C(i)
s ,∑

i

E

[

log

(

1+
s(i)
12p(i)

12

s(i)
12p(i)

10 +1

)]

+E

[

log

(

1+
s(i)
21p(i)

21

s(i)
21p(i)

20 +1

)]

+ E
[

log
(

1+s(i)
10p(i)

10 +s(i)
20p(i)

20

)]}
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Achievable Rates for Two User Cooperative OFDMA
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Achievable Rates for Two User Cooperative OFDMA
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Summary and Conclusions

• Introduced a two user cooperative OFDMA system, and proposed two encoding strategies

based on block Markov superposition encoding:

– Intra-subchannel cooperative encoding

– Inter-subchannel cooperative encoding

• Derived rate region expressions and obtained the achievable rate regions for both encoding

strategies

• Showed that re-partitioning and re-encoding of the cooperative messages across

subchannels;

– Always superior to intra-subchannel cooperative encoding.

– Significant improvement with respect to non-cooperative OFDMA.

• Can we do any better? Yes! Power control.
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Power control for cooperative OFDMA

• The structure of the problem is very silmilar to the scalar case.

– Now, we have an additional sum constraint for powers, over the sub-channels.

• The dimensionality of the problem isN times the scalar case.

• Can still use subgradients. A little slow, but it works.

• Can also exploit the convex nature of the problem, if we formulate it correctly.
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Differentiable Reformulation of Sum-Rate Maximization Problem

• Idea: get rid of the minimum operation:
max
p(i)(s)

r

s.t. r ≤ ∑
i

E
[

log
(

1+s(i)
10(p(i)

12(s)+ p(i)
U1

(s))+s(i)
20(p(i)

21(s)+ p(i)
U2

(s))

+2
√

s(i)
10s(i)

20p(i)
U1

(s)p(i)
U2

(s)
)]

r ≤ ∑
i

E
[

log(1+ p(i)
12(s)s

(i)
12)+ log(1+ p(i)

21(s)s
(i)
21)
]

∑
i

(

E
[

p(i)
12(s)

]

+E
[

p(i)
U1

(s)
])

≤ p̄1

∑
i

(

E
[

p(i)
21(s)

]

+E
[

p(i)
U2

(s)
])

≤ p̄2

p(i)
12(s), p(i)

U1
(s), p(i)

21(s), p(i)
U2

(s) ≥ 0, ∀s
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Lagrangian Approach

L = r + γ1

(

∑
i

(

E
[

log(1+s(i)
12p(i)

12(s))+ log(1+s(i)
21p(i)

21(s))
])

− r

)

+ γ2

(

∑
i

E
[

log
(

1+s(i)
10(p(i)

12(s)+ p(i)
U1

(s))+s(i)
20(p(i)

21(s)+ p(i)
U2

(s))

+2
√

s(i)
10s(i)

20p(i)
U1

(s)p(i)
U2

(s)
)]

− r

)

+λ1

(

p̄1−∑
i

(

E
[

p(i)
12(s)+ p(i)

U1
(s)
])

)

+λ2

(

p̄2−∑
i

(

E
[

p(i)
21(s)+ p(i)

U2
(s)
])

)

+ ε(i)
1 (s)p(i)

12(s)+ ε(i)
2 (s)p(i)

U1
(s)

+ ε(i)
3 (s)p(i)

21(s)+ ε(i)
4 (s)p(i)

U2
(s).
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Karush-Kuhn-Tucker Conditions

γ1
s(i)
12

1+s(i)
12p(i)

12(s)
+ γ2

s(i)
10

D(i)
≤ λ1

γ1
s(i)
21

1+s(i)
21p(i)

21(s)
+ γ2

s(i)
20

D(i)
≤ λ2

γ2

√

s(i)
10s(i)

20p(i)
U2

(s)+s(i)
10

√

p(i)
U1

(s)

D(i)
√

p(i)
U1

(s)
≤ λ1

γ2

√

s(i)
10s(i)

20p(i)
U1

(s)+s(i)
20

√

p(i)
U2

(s)

D(i)
√

p(i)
U2

(s)
≤ λ2

• γ1 + γ2 = 1

• Each condition satisfied with strict equality, if the corresponding power is positive.

• All we need to do is findλi andγ1
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Structure of Optimal Power Allocation

• WhenpU1 andpU2 are both positive,

p(i)
12(s) =





γ1

(

λ2s(i)
10 +λ1s(i)

20

)

λ2
1s(i)

20

− 1

s(i)
12





+

p(i)
21(s) =





γ1

(

λ2s(i)
10 +λ1s(i)

20

)

λ2
2s(i)

10

− 1

s(i)
21





+

• When both are zero,p12 andp21 solved from,

γ1
s(i)
12

1+s(i)
12p(i)

12(s)
+ γ2

s(i)
10

1+s(i)
10p(i)

12(s)+s(i)
20p(i)

21(s)
≤ λ1

γ1
s(i)
21

1+s(i)
21p(i)

21(s)
+ γ2

s(i)
20

1+s(i)
10p(i)

12(s)+s(i)
20p(i)

21(s)
≤ λ2
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Iterative Power Allocation Algorithm

• All powers can be computed using KKT conditions, by iteratively searching for Lagrange

multipliers.

• Not exactly closed form:pU1 andpU2’s depend onp12 andp21, and vice versa.

• Objective function concave, constraints strictly convex,Cartesian nature across users:

– Can solve the users’ powers iteratively – one user at a time.

– Start by assumingpU ’s positive, and iterate. Converges to optimum.
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Optimal Power Allocation over Fading States– U-D links high
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Optimal Power Allocation over Fading States– U-D links moderate
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Cooperative OFDMA – Achievable Rates with Power Control
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