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Abstract—For a single carrier frequency division multiple
access (SC-FDMA) system, we obtain the jointly optimal power
and chunk allocation policies which maximize the sum rate. Our
solution is applicable to both localized and interleaved subcarrier
mapping schemes. We solve the joint optimization problem by
sequentially solving two sub-problems: power allocation and
chunk allocation. Primarily, we use an optimal power allocation
algorithm, which we derive from Karush-Kuhn-Tucker (KKT)
conditions; and then we convert the optimum chunk assignment
problem into a maximum weighted matching problem on a
bipartite graph, and hence solve it in polynomial time. We
also propose two greedy chunk allocation algorithms with lower
complexity, and demonstrate that these algorithms produce near
optimal results, especially for interleaved subcarrier mapping,
when used in conjunction with optimal power control.

I. INTRODUCTION

Single carrier frequency division multiple access (SC-

FDMA) is becoming an increasingly popular choice for uplink

transmissions, thanks to its ability to resolve the high peak to

average power ratio (PAPR) issue commonly faced in orthog-

onal frequency division multiple access (OFDMA) systems

[1], [2]. As a result, it has now entered the standards, such

as LTE-Advanced, and efficient resource allocation for SC-

FDMA therefore remains a hot topic.

An SC-FDMA system can be considered as a pre-coded

OFDMA system, whose data signals are pre-coded by a

Discrete Fourier Transform (DFT) block before subcarrier

mapping at the transmitter, and decoded by an Inverse DFT

block after subcarrier de-mapping at the receiver [1]. In SC-

FDMA, the subcarriers have to be grouped into sets before

being assigned to users. A set of particular subcarriers grouped

together is called a chunk. While pre-coding and use of chunks

reduces the PAPR compared to the OFDMA system, the

intersymbol interference (ISI) rejection capability is reduced

and the SC-FDMA system needs to use frequency domain

equalizers to mitigate ISI [3].

The resource allocation problem for OFDMA systems has

been extensively studied in the literature. A multiuser orthog-

onal frequency-division multiplexing (OFDM) subcarrier, bit

and power allocation algorithm to minimize the total transmit

power was proposed in [4]. An optimal joint subcarrier and

power allocation algorithm for OFDMA systems was proposed

in [5]. The joint resource allocation problem for SC-FDMA,

however, has a considerably different nature than that for

an OFDMA system, due the the inherent requirement that

the subcarriers have to be grouped into chunks. As a result,

the works on resource allocation for SC-FDMA have almost

invariably focused on chunk allocation only. The problem

of chunk allocation for the uplink of an SC-FDMA system

with a minimum mean square error (MMSE) equalizer was

considered in [3]. Yet, power allocation was not employed

in [3], which assigned equal powers to all subcarriers in

the same chunk and proposed greedy algorithms for chunk

allocation. An optimal solution, as well as a greedy algorithm

for resource allocation in uplink SC-FDMA systems were

proposed in [6], without considering power allocation. In

[7], the greedy solution provided in [6] was improved and

three algorithms based on greedy approaches were developed:

weighted sum-rate maximization, transmission with minimal

number of subchannels and sum-power minimization. How-

ever, joint optimization of chunks and powers was not carried

out. The solution of [3] was improved by swapping pairs of

users assigned by a greedy algorithm in [8]. In [9], another

modification of the greedy algorithm of [3], called maximum

greedy algorithm was proposed. In [10], a virtual multiple in-

put multiple output (V-MIMO) model was used and assuming

that two users transmit their data in the same time slot and

frequency band, a combination of the Hungarian algorithm

and the binary switching algorithm for chunk allocation was

proposed.

Unlike the previous works on resource allocation for SC-

FDMA that focus only on chunk allocation without power

allocation, or vice-versa, in this work, we focus on joint

allocation of chunks and transmit powers for uplink SC-

FDMA systems, and propose a jointly optimal power and

chunk allocation algorithm. First, we separate the problem

into two sub-problems: optimal power allocation and optimal

chunk allocation. Primarily, the power allocation algorithm,

which is derived from the KKT conditions, assigns the power

of each of the users, to the subcarriers of each given chunk,

thereby determining the rate achievable by each user on each

chunk. Then a maximum weighted matching algorithm finds

the matching between the users and chunks which maximizes

the total rate of the system. Finally, two greedy algorithms for

joint chunk and power allocation to maximize the overall sum

rate are proposed.

II. SYSTEM MODEL

We consider an SC-FDMA system with B Hz total band-

width and K users. The total frequency band is divided into L
subcarriers of equal bandwidth, B/L. The L subcarriers have

to be grouped into several chunks to be allocated to different

users. Assuming that the system has N chunks, each of the

chunks have M = L/N subcarriers and occupy a bandwidth

of B/N Hz. We assume that the system is overloaded, i.e., the

number of users with data available for transmission is always

greater than or equal to the number of chunks. Moreover, in

order to maximize the user capacity and preserve fairness, we



assume that each user can only take one chunk in the system.

There are two types of subcarrier mapping methods in SC-

FDMA: localized FDMA (LFDMA) and interleaved FDMA

(IFDMA). In LFDMA, the subcarriers of a chunk are adjacent

to each other. In IFDMA, the subcarriers of a chunk are

distrubuted equidistantly over the entire frequency band in

order to avoid allocating adjacent subcarriers in deep fading.

In this paper, we address both subcarrier mapping approaches.

The chunk assignment decisions are made at the base

station. Thus, we assume that the base station has perfect

channel state information (CSI) about the links from the users.

Let In denote the set of subcarriers, assigned to each chunk

n ∈ {1, . . . , N}; hi,k denote the channel coefficient of user

k on subcarrier i and pi,k denote the power assigned by user

k to subcarrier i. Let σ2
i,k be the noise power on subcarrier

i for user k. Assuming MMSE equalization is performed at

the receiver, the rate achievable by each user depends on the

equivalent signal-to-noise ratio (SNR) γn,k of user k on chunk

n, obtained after MMSE equalization as in [3], [11], [12],

γn,k =











1

|In|
∑

i∈In

pi,k|hi,k|
2

σ2

i,k

pi,k|hi,k|2

σ2

i,k

+ 1





−1

− 1







−1

. (1)

Our goal is to obtain the optimal power and chunk allocation

which jointly maximize the sum rate of the system. Note that,

the rate

Rn,k = (B/N) log2 (1 + γn,k), (2)

is achievable by user k, assuming that it transmits on chunk

n. Due to the orthogonality of the chunks, the sum rate of the

system can simply be computed by adding the rates achievable

on each chunk, i.e.,

Rsum =

N
∑

n=1

K
∑

k=1

ωn,kRn,k, (3)

=

N
∑

n=1

K
∑

k=1

ωn,k(B/N) log2 (1 + γn,k), (4)

where ωn,k ∈ {0, 1} is an indicator variable, which takes the

value 1 if nth chunk is allocated to user k, and 0 otherwise.

Since each user is assumed to be assigned at most one chunk,

we need
∑

n ωn,k ≤ 1, for all k ∈ {1, · · · ,K}.

Subcarriers In of chunk n can be either consecutive or

equidistantly distributed over the entire bandwidth, hence the

problem we solve in this paper is applicable to both localized

and interleaved chunk allocations. In the following section, we

give the problem formulation and the optimality conditions to

maximize sum rate of the system.

III. JOINT POWER AND CHUNK ALLOCATION

Plugging (1) into (4), and after some manipulation, we can

rewrite the sum rate in terms of the powers pi,k:

Rsum=−
(

B

N

) N
∑

n=1

K
∑

k=1



ωn,k

log2

(

1− 1

|In|
∑

i∈In

pi,k|hi,k|2
pi,k|hi,k|2 + σ2

i,k

)



. (5)

For simplicity, let us define

ci,k =
σ2
i,k

|hi,k|2
, (6)

which can be interpreted as the inverse of the normalized

channel gain. Then, dropping the constant (B/N), the problem

of maximizing (5) is equivalent to

max
ωn,k
pi,k

N
∑

n=1

K
∑

k=1



− ωn,k log2

(

1− 1

|In|
∑

i∈In

pi,k
pi,k + ci,k

)



,

s.t.

K
∑

k=1

ωn,k ≤ 1 ∀n,
N
∑

n=1

ωn,k ≤ 1, ∀k

M
∑

i=1

pi,k ≤ P̄k ∀k, pi,k ≥ 0, ∀i, k, (7)

where P̄k is the available average power of user k.

Note that, it is rather difficult to jointly optimize the chunks

allocated to each user, and powers allocated to each chunk,

since the chunk allocation problem itself is a combinatoric

problem even without power allocation, and the powers clearly

depend on which chunk is selected, through the channel

coefficients. Therefore, in what follows, we propose a two

step solution, without compromising optimality:

Proposition 1: The solution to problem (7) can be obtained

by solving the two step problem

max
ωn,k

N
∑

n=1

ωn,k

K
∑

k=1

max
pi,k



− log2

(

1− 1

|In|
∑

i∈In

pi,k
pi,k + ci,k

)



,

s.t.

K
∑

k=1

ωn,k ≤ 1 ∀n,
N
∑

n=1

ωn,k ≤ 1, ∀k

M
∑

i=1

pi,k ≤ P̄k ∀k, pi,k ≥ 0, ∀i, k. (8)

Proof: First, we fix the chunk allocation coefficients, i.e.,

ωn,k, to an admissible set that satisfy the conditions in (7). The

key here is to observe that, fixing ωn,k, ∀n is equivalent to

fixing the set of subchannels, say In,k , to be allocated to each

user k. But then, we can find the overall sum rate achievable

by the users under each fixed chunk assignment by solving

max
pi,k

K
∑

k=1



− log2



1− 1

|In,k|
∑

i∈In,k

pi,k
pi,k + ci,k







,

s.t.
∑

i∈In,k

pi,k ≤ P̄k ∀k, pi,k ≥ 0, ∀i, k. (9)

Due to the orthogonality of the subchannels, the maximization

can be carried out separately over each chunk, or equivalently,

over each user. Hence, the maximum operation can be moved



inside the summation over the users, to yield

max
pi,k



− log2



1− 1

|In,k|
∑

i∈In,k

pi,k
pi,k + ci,k







,

s.t.
∑

i∈In,k

pi,k ≤ P̄k ∀k, pi,k ≥ 0, ∀i, k. (10)

Let us denote by R∗
n,k, the maximum achievable rate by each

user k over chunk n, obtained from (10). Then, (7) becomes

max
ωn,k

N
∑

n=1

ωn,k

K
∑

k=1

R∗
n,k

s.t.

K
∑

k=1

ωn,k ≤ 1 ∀n,
N
∑

n=1

ωn,k ≤ 1, ∀k (11)

which is equivalent to (8), since the optimal chunk allocation

is in the feasible set, and an exhaustive search over all chunk

allocations will clearly yield the global optimum sum rate.

In what follows, we will first solve the inner maximization

problem (10), derive the optimum power allocation policy for

a fixed chunk assignment, and propose an algorithm to find

the optimal power distribution. Then, we will solve the outer

maximization problem in (8), and propose efficient optimal

and suboptimal algorithms for chunk allocation.

A. Optimal Power Allocation

We start by noting that the cost function in (10) is concave,

and the constraints form a convex set. Hence, this is a well

defined convex optimization problem, with the solution given

in the following proposition.

Proposition 2: The optimal power allocation for user k over

each subcarrier i is given by

pi,k =

(√

ci,k
λk

− ci,k

)+

, (12)

where λk > 0 is a real number, selected so that the per user

power constraint is satisfied, and (·)+ denotes max(·, 0).
Proof: Due to the convex nature of the problem, KKT

conditions are necessary and sufficient for optimality. Let us

define the Lagrangian by

L = − log2



1− 1

|In,k|
∑

i∈In,k

pi,k
pi,k + ci,k





+

K
∑

k=1

ξi,kpi,k − µk

K
∑

k=1

(

pi,k − P̄k

)

, (13)

where µk is the Lagrange multiplier assigned to the power

constraint and ξi,k are the Lagrange multipliers assigned to

the non-negativity constraints for the powers. Taking partial

derivatives, the KKT conditions,
(

1

A

)

ci,k
(pi,k + ci,k)2

− µk + ξi,k = 0, ∀i, k, (14)

pi,kξi,k = 0, ∀i, k, (15)

∑

i∈In,k

pi,k ≤ P̄k, (16)

are obtained, where,

A = ln 2



1− 1

|In,k|
∑

i∈In,k

pi,k
pi,k + ci,k



 . (17)

Letting µkA = λk , and combining (14) and (15), the optimal

powers should satisfy

ci,k
(pi,k + ci,k)2

≤ λk, (18)

with equality if and only if pi,k > 0 (or else, ξi,k > 0 and we

get strict inequality). Solving (18) for pi,k, and selecting λk

so that (16) are satisfied, we obtain the desired result.

The optimal power allocation can be approximately found to

within any desired precision using a binary search over the real

number λk, by selecting an appropriate stopping criterion. In

what follows, we show that the exact optimal solution may

also be found with very low complexity. First, we prove a

useful property of the optimal powers:

Proposition 3: Let c[i],k denote an ordered version of the

inverse normalized channel gains ci,k, i.e., let c[i],k < c[i+1],k,

∀i, ∀k. Then, p[i+1],k > 0 implies p[i],k > 0. Moreover, if

p[i+1],k > 0, then,

p[i],k =

√

c[i],k

c[i+1],k

(

p[i+1],k + c[i+1],k

)

− c[i],k, (19)

Proof: The first part is easily proved by contradiction.

Assume p[i+1],k > 0 is possible when p[i],k = 0. Then, from

(18) we need

1

(c[i],k)
≤ λk =

c[i+1],k

(p[i+1],k + c[i+1],k)2
<

1

(c[i+1],k)
, (20)

which is a contradiction, as by assumption c[i],k < c[i+1],k,

thereby proving the first statement. The second statement

follows, since p[i+1],k > 0 implies p[i],k > 0 by the previous

statement, and from (18), we have

λk =
c[i],k

(p[i],k + c[i],k)2
=

c[i+1],k

(p[i+1],k + c[i+1],k)2
. (21)

Solving for p[i],k, and noting that the solution is always

positive, we get the desired result.

Remark 1: In plain terms, Proposition 3 states that a sub-

carrier in a chunk can be assigned a non-zero power, only if

all subcarriers with stronger channel conditions in the chunk

are already used, which is quite intuitive. Note however that,

this does not mean the assigned powers have to be monotone

increasing in channel gains as in the typical waterfilling

solution for OFDMA systems: this interesting observation can

be verified by simply considering a 2-subcarrier per chunk

scenario and setting c1,k = 1, c2,k = 2, λk = 0.01 and

P̄k = 10
√
2 + 7, which can be shown to satisfy the KKT

conditions with powers p1,k = 9 < 10
√
2− 2 = p2,k.

Proposition 3 suggests a natural method for solving the opti-

mization problem exactly without having to search for the real



valued λk. Let p[i],k > 0 for i = {1, . . . ,m}, and p[i],k = 0
for i = {m + 1, . . . ,M}. It is easy to show that by iterated

use of (19), all powers can be written in terms of the first

non-zero power in the sequence, i.e., p[m],k, by

p[i],k =

√

c[i],k

c[m],k

(

p[m],k + c[m],k

)

− c[i],k, i = {1, . . . ,m}

(22)

and substituting this in the power constraint, we get

p[m],k =
P̄k +

∑m

i=1(c[i],k −
√
c[i],kc[m],k)

∑m

i=1

√

c[i],k/c[m],k

. (23)

Once p[m],k is computed, all other powers can be computed

recursively. Note that, one still needs to find the value of m
for which p[i],k > 0 for i = {1, . . . ,m} and p[i],k = 0 for

i = {m + 1, . . . ,M}, but since the search space is integers,

this can simply be done in at worst M steps (complexity of

logM is also possible by binary search, but we focus on a

linear search to keep the algorithm concise), by computing

p[m],k using (23), until a positive value is found. The overall

algorithm that is used to find optimal powers is summarized

as Algorithm 1.

Algorithm 1 Power Allocation

1: Fix k, n; set m = M
2: Sort ci,k in ascending order

3: Compute p[m],k using (23)

4: while p[m],k ≤ 0 do

5: m=m-1

6: Compute p[m],k using (23)

7: end while

8: Compute p[i],k using (22)

The worst case complexity of the algorithm is O(M logM),
due to the channel sorting operation. Since M = 12 in a

typical SC-FDMA system, the convergence is very fast.

B. Optimal and Suboptimal Chunk Allocation

We now turn to the problem (11), and focus on optimal

chunk allocation. Assume that, using Algorithm 1, the optimal

power allocation, and hence the maximum achievable rate

R∗
n,k is computed for all possible user-chunk pairs n, k. The

key is to realize that, since each chunk can be assigned

to only one user, and vice versa, (11) can be stated as a

maximum weighted matching problem on a bipartite graph,

or in other words an assignment problem, where the weight

on the edge connecting each user and chunk is the corre-

sponding power optimized rate, as shown in Figure 1. Then,

standard techniques from graph theory, such as the Hungarian

algorithm, can be used to solve (11) in polynomial time, i.e.,

O(max(N,K)3) and obtain ωn,k that are jointly optimal with

the powers found in Section III-A.

In order to further speed up the chunk assignment problem,

we also propose two suboptimal greedy algorithms. The first

one, which we call jointly greedy user-chunk allocation, first

obtains R∗
n,k ∀k, n, and then finds the pair {k̃, ñ} with the

R
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Fig. 1. Bipartite graph representing matching of users and chunks

highest rate. Next, k̃ and ñ are deleted from the set of available

chunks and users, and the search is repeated until all chunks

are allocated. The complexity of this algorithm, which is

given as Algorithm 2, is O(N2K), which is less than that

of maximum weighted matching, especially with N < K .

Algorithm 2 Jointly Greedy User-Chunk Allocation

1: Compute R∗
n,k ∀ k, n, using Algorithm 1.

2: Initialize SU = {1, . . . ,K}, SC = {1, . . . , N}
3: for j=1:N do

4: [ñ, k̃] = argmaxn∈SU , k∈SC
R∗

n,k

5: Allocate the chunk ñ to the user k̃
6: SU = SU − {k̃}, SC = SC − {ñ}
7: end for

The second greedy algorithm that we propose, which is

called greedy user allocation, is a much faster algorithm which

simply goes through the chunks only once, and for each chunk,

finds the most favorable user among the set of unassigned

users, and assigns it to the chunk being considered. The

pseudocode of the algorithm is given as Algorithm 3.

Algorithm 3 Greedy User Allocation

1: Initialize SU = {1, . . . ,K}
2: for n=1:N do

3: Initialize Rn = 0,

4: for k ∈ SU do

5: Compute R∗
n,k using Algorithm 1.

6: if R∗
n,k > Rn then

7: Rn = R∗
n,k

8: k̃ = k
9: end if

10: end for

11: Allocate user k̃ to chunk n
12: SU = SU − {k̃}
13: end for

The advantage of this algorithm is twofold: it not only

runs with much less complexity, i.e., O(NK), but it also can

be implemented such that the power optimized rates R∗
n,k

are computed and ordered on the fly while assigning users



to chunks (note that only the maximum for each chunk is

needed). Hence, the storage requirement is significantly less,

as all user-chunk pairs need not be considered. In the following

section, we compare the performance of our proposed optimal

and suboptimal joint power allocation algorithms.

IV. SIMULATION RESULTS

We generate 8-tap Rayleigh channels for each user. Each

tap has 10ms delay, so the maximum delay spread is 70 ms

for each user. An additive white Gaussian noise (AWGN) with

zero mean is assumed at the receiver. An MMSE equalizer is

used and the maximum transmit power of each user is scaled

to give a average received SNR value of -5dB. We assume that

each chunk has M = 16 subcarriers and each subcarrier has

19.531 kHz (5 MHz bandwidth/256 subcarriers) tone spacing.

In Figure 2, we evaluate the performance of our proposed

optimal and suboptimal algorithms for joint chunk and power

allocation using Monte Carlo approach, for a system with

16 chunks. We compare our results to [3], which uses equal

power for each subcarrier; and two round robin scheduling

schemes, labeled R-LFDMA and R-IFDMA. In curves labeled

LFDMA, chunks with adjacent subcarriers are assigned to

users, and in curves labeled IFDMA, equidistantly distributed

subcarriers along the entire bandwidth are assigned. Although

throughout the paper we assumed K > N , the case with

K ≤ N was also simulated for completeness, with some

necessary modifications to the algorithms. As the number

of users is increased, all chunk allocation schemes except

for the random round robin scheduling achieve increasing

rates, which is due to the diversity created by the additional

users. It is evident that localized subcarrier mapping has

higher sum rate than interleaved subcarrier mapping in all

cases. This is expected as interleaved subcarrier allocation

creates roughly equivalent conditions for all users in each

chunk, and the gain of chunk allocation will be less than

that on localized FDMA where some users are more likely

to experience stronger channels on some chunks due to the

fading model with memory. The optimal maximum weighted

matching algorithm, and the slightly less complex jointly

greedy power user assignment achieve almost identical results,

and the greedy user allocation performs nearly as well at much

lower complexity, especially for the IFDMA scenario. The

gain from optimum power allocation is much more pronounced

for IFDMA with independent subcarrier fading, as in LFDMA,

due to the correlation among the adjacent subcarriers, constant

power allocation is already nearly optimal. As a result, we can

conclude that power allocation is more vital for IFDMA, and

chunk allocation is more vital for LFDMA. Nevertheless, their

joint use always produce the best results. The simulations also

show similar results for a 32 chunk scenario, which are not

included here due to space constraints.

V. CONCLUSION

In this paper, we solved the joint chunk and power al-

location problem for a SC-FDMA system with frequency

domain equalization. The solution was performed in two steps,

separating the power allocation and the chunk allocation steps;

the latter of which was carried out using one optimal, and two

suboptimal yet computationally more efficient approaches. We

demonstrated that, for both localized and interleaved subcarrier

mapping, employing power control in conjunction with chunk

allocation results in significant rate gains over known results,

especially for IFDMA. We further observed that, even with

greedy algorithms for chunk allocation, near optimal solutions

can be obtained, at much lower computational complexity.
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