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Abstract— We solve for the optimum signature sequence and
power allocation policies that maximize the information theoretic
ergodic sum capacity of a code division multiple access (CDMA)
system subject to fading. We show that at most N users may transmit
at any given channel state, where N is the processing gain; and those
users who are transmitting should be assigned orthogonal signature
sequences. We also show that the power allocation policy that
maximizes the capacity together with the choice of these signature
sequences is single user waterfilling over sets of channel states
that are favorable to each user. That is, the capacity maximizing
signalling scheme is shown to dictate that the users allocate their
powers and signature sequences in such a way that they always
avoid interference from each other.

I. INTRODUCTION

An important consideration in the design of wireless commu-
nication systems is the unavoidable presence of fading, caused
by the nature of the system. To maximize the overall network
capacity, one should therefore exploit the variations in the channel
fade levels while allocating the available resources. Resource
allocation for wireless systems can be viewed in several differ-
ent contexts, including SIR-based approaches and information
theoretic approaches (see [1] for some references on both). We
can also group the allocation schemes according to the type of
resources that are allocated. Two important resources are the
transmit powers and the transmit waveforms. Power control has
been studied in SIR-based and information theoretic contexts
for fading and non-fading channels [1]–[4], whereas waveform
optimization has been studied in these two contexts for non-
fading channels only [5]–[7]. Throughout this paper the objective
of resource allocation is to maximize the information theoretic
ergodic (expected) sum capacity, and we consider allocating both
powers and the waveforms as functions of the channel state
information (CSI) in order to achieve this objective. The system
of interest is assumed to be a CDMA network; thus, waveforms
will simply be referred to as signature sequences.

The problem of power control in the context of capacity
maximization for fading channels is first studied in [2] for a single
user channel, and it is shown that the optimum power allocation
policy that maximizes the ergodic channel capacity subject to
an average power constraint is a waterfilling of power over the
inverse of the fade levels. In this policy, more power is allocated
to stronger channel states; and no power is allocated for channel
states below some threshold.

Although we can define the capacity for a single user channel,
when we move onto multiaccess channels, the notion of capacity
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has to be replaced by a region of achievable rates [8], [9]. In such
channels, it is customary to consider the maximum achievable
sum of rates, i.e., the sum capacity as a figure of merit. For
a multiuser scalar channel, where all users transmit with the
same waveform, [3] finds the optimum power allocation policy
which maximizes the ergodic sum capacity. There, it is shown
that, to maximize the sum capacity, the users perform single user
waterfilling over disjoint sets of channel states. That is, each user
transmits only when its channel state (normalized by a factor) is
greater than or equal to that of all other users. Since the channel
fading is a continuous random variable, the equality of the two
ratios corresponds to a zero probability event. Thus, for such a
channel, at most one user transmits at a given channel state with
probability 1.

For vector multiple access channels, such as CDMA, [10]
proposes an asymptotically optimal single user waterfilling strat-
egy to maximize the ergodic sum capacity in the special case
of a large system with random signature sequences. The more
generalized version of the power control problem with arbitrary
signature sequences and arbitrary number of users and processing
gain is solved in [1], where the solution is shown to be a simulta-
neous waterfilling of powers of users, and an iterative algorithm
which performs a one-user-at-a-time single user waterfilling for
each user, while the powers of all other users are fixed, is
shown to converge to the optimal solution. The optimum power
allocation in that case is shown to dictate more than one user
to transmit simultaneously in certain regions of the channel state
space, provided that the signature sequences satisfy some mild
conditions.

The sum capacity of a CDMA network can also be optimized
as a function of the signature sequences. When each user has an
average power constraint, and there is no fading in the system,
[5] shows that when the number of users is less than or equal to
the processing gain, the optimal strategy is to allocate orthogonal
signature sequences to all users, and when the number of users
is greater than the processing gain, with all users having the
same average power constraints, the optimal strategy is to allocate
Welch Bound Equality (WBE) [11] sequences. Reference [6]
generalizes [5] to arbitrary (unequal) average power constraints,
and gives the optimal signature sequence allocation as a function
of the power constraints of the users. Specifically, for the case in
which the number of users is greater than the processing gain,
when a user has a relatively larger power constraint then the
others, it is called “oversized”, and such users are allocated or-
thogonal signature sequences; whereas the “non-oversized” users
are allocated the so-called Generalized Welch-Bound-Equality



(GWBE) sequences.
In this paper, we attack the problem of joint power and

signature sequence optimization in order to maximize the ergodic
sum capacity of a fading CDMA system. Specifically, we adapt
the set of signature sequences and transmit powers of all users
as a function of the CSI, in order to maximize the ergodic sum
capacity. At each fading state, for any given arbitrary power
allocation, results of [6] can be used to allocate the optimal
sequences. Among those power allocations, with signature se-
quences chosen optimally, we find the best power allocation
strategy.

We show that the optimal strategy is still a waterfilling strategy
for each user, and very strikingly, at each fading state, that
strategy dictates that we allocate (at most) N orthogonal signature
sequences to the users with best (at most) N channel states
(scaled by a factor as in [3]). Moreover, the other users with worse
channel states than the users with orthogonal sequences do not
transmit at those particular channel states. This means that there
are no users in the system which are allocated GWBE sequences
and are yet transmitting with nonzero powers. Thus, in contrast to
signature sequence optimization for non-fading channels, GWBE
sequences are never used in transmissions; more precisely, they
are used only with zero probability.

Our solution resembles [3] in the sense that there is an ordering
of channel states that determines which users will transmit, but
it also resembles the solution in [2] in that once we know
which users will transmit at each channel state, all users will
choose their powers as if they are alone in the system, i.e., they
will perform single user waterfilling over favorable regions of
the channel state space. This result shows that, when we have
the opportunity to control both the signature sequences and the
powers of the users, the users completely avoid each other, i.e.,
certain groups of users transmit on disjoint sets of channel states,
and within each group of users that transmit at the same channel
state, users place themselves orthogonal to each other in the
signature sequence space, thus avoiding any possible interference.

Lastly we provide an iterative algorithm that is guaranteed to
converge to the optimal power and signature sequence allocation.
The algorithm performs a one-user-at-a-time waterfilling, and
converges to the optimum solution described above.

II. PROBLEM DEFINITION

We consider a CDMA system with processing gain N , where
all K users transmit to a single receiver. In the presence of fading
and AWGN, the received signal is given in the vector form by
[12],

r =
K
∑

i=1

√

pihibisi + n (1)

where si = [si1, · · · , siN ]
>, pi, hi, bi are the unit energy

signature sequence, transmit power, channel gain and information
symbol, respectively, of user i, and n is a zero-mean Gaussian
random vector with covariance σ2IN . The information symbol bi
is assumed to have unit energy, i.e., E[b2i ] = 1. We assume that
the receiver and all of the transmitters have perfect knowledge
of the channel states of all users represented as a vector h =

[h1, · · · , hK ]
>. We further assume that although the fading is

slow enough to ensure constant channel gain in a symbol interval,
it is fast enough so that within the transmission time of a block
of symbols the long term ergodic properties of the fading process
can be observed [13].

For a given set of signature sequences and a fixed set of channel
gains, h, the sum capacity Csum(h, p̄,S) is [9],

Csum(h, p̄,S) =
1

2
log

[

det

(

IN + σ−2
K
∑

i=1

hip̄isis
>
i

)]

(2)

where p̄i is the average power of user i, p̄ = [p̄1, · · · , p̄K ],
and S = [s1, · · · , sK ]. To maximize the above capacity for that
particular h, one can choose the signature sequences of the users
for a given set of power constraints. An equivalent problem is
solved in [6], in the no-fading case, i.e., hi = 1, for all i.

In the presence of fading, if the channel state is modelled as
a random vector, the quantity Csum(h, p̄,S) is random as well,
and the ergodic sum capacity is found as the expected value
of Csum(h, p̄,S). Instead of keeping the transmit power of user
i fixed to p̄i as in (2), we can choose the transmit powers of
the users pi(h), i = 1, · · · ,K, as a function of the channel
state with the aim of maximizing the ergodic sum capacity of
the system subject to average transmit power constraints for all
users. Similarly, we can choose the signature sequences S to be a
function of the channel state as well; let us denote it by S(h) to
show the dependence on the channel state. Therefore our problem
is to solve for the jointly optimum transmit powers and signature
sequences as a function of the channel state in order to maximize
the ergodic sum capacity of the system in the presence of fading.
The problem can be stated as,

max
p(h),S(h)

∫

log

[

det

(

IN +

K
∑

i=1

hipi(h)

σ2
si(h)si(h)

>

)]

f(h)dh

s.t.
∫

pi(h)f(h)dh = p̄i, pi(h) ≥ 0 (3)

where f(h) denotes the probability density function of the
channel state vector.

III. JOINT SIGNATURE SEQUENCE AND POWER ALLOCATION

In order to jointly optimize the powers and signature se-
quences, we first fix power distributions of all users over all
fading states. Then, the corresponding optimal signature sequence
set at every channel state will consist of a combination of
orthogonal and GWBE sequences [6]. This is due to the fact
that, the signature sequences at a fading state h can be chosen
independently of the signature sequences at any other state, since
once the powers are fixed, there are no constraints relating S(h)
to S(h̄) for h 6= h̄. That is, we can freely choose a sequence set
at a given state h without changing the contribution to the sum
capacity of another state h̄; this clearly is not true for the power
allocation, since once we allocate a power level for a given state
h, we have less power left to allocate to other states, and overall
capacity is affected. Since the optimum signature sequences at
each channel state depend only on powers p(h) and the channel



state h, we can express the capacity at each channel state only
as a function of the powers, and optimize the ergodic capacity
in terms of the power allocation. Let us define the signature
sequence optimized sum capacity at channel state h for a given
power control policy p(h) by

Copt(h,p(h)) , max
S(h)

Csum(h,p(h),S(h)) (4)

where Csum(h,p(h),S(h)) is the argument of the expectation in
the objective function of (3), i.e., it is the function in (2) where
p̄ is replaced by p(h) and S is replaced by S(h). For a fixed h,
it can be shown using majorization theory that Copt(h,p(h)) is
a concave function of the power vector at channel state h, p(h)
[14, Proposition 2.2]. Then, the problem in (3) can be written
only in terms of the powers as

max
p(h)

∫

Copt(h,p(h))f(h)dh

s.t.
∫

pi(h)f(h)dh = p̄i, pi(h) ≥ 0 (5)

First consider the case when K ≤ N . For any fixed channel
state, the optimal choice of signature sequences for a given power
control policy p(h) is an orthogonal set [5], [6]. Noting that the
received power levels are pi(h)hi, solving (5) is equivalent to
solving K independent Goldsmith-Varaiya problems [2] (see also
[1]), the solution to which is a single user waterfilling for each
user. The optimal solution p∗(h) is the unique solution satisfying
the Karush-Kuhn-Tucker (KKT) conditions, and is given by,

p∗i (h) =

(

1

λi
−
σ2

hi

)+

, i = 1, · · · ,K (6)

where λi is solved by plugging (6) into (5).
One remarkable observation is that in obtaining Copt(h,p(h)),

it is possible to adopt a channel non-adaptive signature sequence
allocation policy, i.e., each user can be assigned a designated
signature sequence, which it can use at all channel states, as long
as the signature sequences in this set are orthogonal. A channel
adaptive scheme will also perform equally well as long as the
signature sequences we choose at each h are from an orthogonal
set.

When K > N , it has been shown in [6], for a non-fading
channel, that given the power constraints of all users, one can
group the users into two sets L and L̄, of oversized and non-
oversized users, respectively. Users i ∈ L are assigned orthogonal
sequences, and users i ∈ L̄ are assigned GWBE sequences. For
a channel with fading, at a certain channel state h, and for a
certain arbitrary power distribution of users which assigns powers
p1, · · · , pK to channel state h, let us define the matrix D ,

diag(p1h1, · · · , pKhK), and define µi to be the eigenvalues of
the matrix SDS>. Then the signature sequences that maximize
the sum capacity for any fixed h satisfy [15],

SDS>si = µisi, i = 1, · · · ,K (7)

clearly with repetitions of some of the µis (since there are only
N eigenvalues of SDS>), where the optimal µis are given by
[6],

µi(h) =







∑

j∈L̄ pjhj

N − |L|
, i ∈ L̄

pihi, i ∈ L
(8)

In the fading case with channel adaptive powers, as suggested
by the results in [1]–[3], it is likely that some users will have
powers equal to zero at some channel states, and they will not
contribute to Csum at those channel states. Although the concept
of oversized users is defined for users with nonzero average power
constraints, since users which are allocated zero power at state
h will not contribute to the sum capacity, we can add them to
the set of non-oversized users at channel state h, L̄(h), and we
can assume that we assign arbitrary sequences for those users
without changing the solution. Note however that, while finding
the set of oversized users, we will disregard the users with zero
power. Using the optimum eigenvalue assignment in (8) at each
state, the objective function of the problem (5) can be expressed
in the alternative form,

∫





∑

i∈L(h)

log

(

1 +
pi(h)hi
σ2

)

+(N − |L(h)|) log

(

1 +

∑

i∈L̄(h) pi(h)hi

σ2(N − |L(h)|

)]

f(h)dh (9)

For a given channel state h, let the set of users that will transmit
with non-zero powers be K̄(h). Then the number of users in
K̄(h) cannot exceed N , as stated by the following theorem.

Theorem 1: Let K̄(h) be a subset of {1, · · · ,K}, such that
∀i ∈ K̄(h), p∗i (h) > 0, where p∗(h) is the maximizer of (9).
Then, |K̄(h)| ≤ N , almost surely.

Proof: By concavity of Copt(h,p(h)), it is clear that the function
in (9) is concave, and the maximization in (5) is over an affine
set of constraints. Therefore, a power vector p∗(h) achieves the
global optimum of the maximization problem if and only if it
satisfies the KKT conditions. Then, writing the KKT conditions
for the objective function in (9), it is easy to show that

hi
µi(h) + σ2

≤ λi, ∀h (10)

where µi(h) is given by (8), and equality holds if pi(h) > 0.
Now, let us assume that the number of non-zero components in
p∗(h) is |K̄(h)| > N , for a given h. Then, some users must
share some of the available dimensions, i.e., not all users can
be made orthogonal to each other. In fact, we can find at most
N−1 sequences that are orthogonal to all other sequences in the
system, or equivalently, at least |K̄(h)| −N + 1 users will have
the same µi =

∑

j∈L̄(h) hjpj/(N − |L(h)|). Then, substituting
this into (10), we get hi/λi = hj/λj for i 6= j, i, j ∈ K̄(h) for
at least |K̄(h)| −N +1 users. Note that as the channel fading is
assumed to be a continuous random variable, this event has zero
probability, and at most one user with GWBE sequences (one
with highest hi/λi ratio, as in [3]) may transmit, with probability
1. But this contradicts the assumption that |K̄(h)| > N , which
establishes our main result, i.e., |K̄(h)| ≤ N almost surely. 2



An important implication of this result is, since the optimal
power allocation dictates that at most N users transmit with
positive powers, orthogonal sequences should be assigned to
those users that are transmitting with positive powers. That is,
although we allowed for allocating GWBE sequences to some
of the users, the solution implies that there is at most one such
user, and the problem reduces to the orthogonal case. The optimal
power allocation is again single user waterfilling, similar to the
solution given in (6), i.e.,

p∗i (h) =

{ (

1
λi

− σ2

hi

)

, i ∈ K̄(h)

0, otherwise
(11)

Here, one needs to be careful about the transmit regions. Unlike
the case where the actual number of users K ≤ N , the users in
the set K̄(h) change with h, thus a channel adaptive allocation
of the orthogonal sequences is necessary. Our convention is, we
assign a sequence from an orthogonal set to a user, wherever its
power is positive.

To specify the optimal power allocation completely, let us
define γi = hi/λi. Then, the probability that γi = γj , for i 6= j
is zero. Therefore, we can always find a unique order statistics
{γ[i]}

K
i=1 such that γ[1] > · · · > γ[K], for each given h. Let

us now place σ2 in that ordering, assuming that at least one of
the γ[i]s is larger than σ2. Define γ[K+1] = 0. Then, for some
n ∈ {1, · · · ,K}, let

γ[1] ≥ · · · ≥ γ[n] > σ2 ≥ γ[n+1] ≥ · · · ≥ γ[K+1] (12)

where the equalities are included for the sake of consistency
of the indices, and do not affect the solution (note the strict
inequality just before σ2).

First, let n ≤ N . Then, we see that (11) gives positive powers
for all n users, and thus all n users with highest γis will transmit
with the non-zero powers given in (11). When n > N , there are
more than N users satisfying the positivity constraints γi > σ2.
However, we know from our derivation that only the user with
the highest γi from the set we intend to assign GWBE sequences
may transmit. Therefore, a total of N users with the highest γis
transmit at this channel state.

Finally, we can summarize the jointly optimal power and
signature sequence allocation policy as,

p∗i (h) =

{ (

1
λi

− σ2

hi

)

, iff i ∈ Ω

0, otherwise

s∗i (h)
>s∗j (h) = 0, i 6= j, ∀ i, j ∈ Ω

Ω =
{

i : γ[i] > σ2, i ≤ min{K,N}
}

(13)

IV. ITERATIVE POWER AND SEQUENCE OPTIMIZATION

We found in the previous section that the optimal power
control strategy is a waterfilling over some favorable fading states
for each user. In [1], it was shown that a one-user-at-a-time
waterfilling algorithm converges to an optimum simultaneous
waterfilling solution, that maximizes the ergodic sum capacity
for a fixed set of signature sequences. This result motivates us to
develop a similar algorithm for the joint signature sequence and
power optimization problem.

In [1], we have shown that for fixed signature sequences S,
the optimal single-user update that maximizes the sum capacity
as a function of pk(h) is given by,

pk(h,S) =

(

1

λk
−

1

hks>kA
−1
k sk

)+

(14)

where the interference covariance matrix Ak is defined as,

Ak = σ2IN +
∑

i6=k

hipi(h)sis
>
i

= σ2IN + SDS> − hkpk(h)sks
>
k (15)

We can find and fix the optimal signature sequences at each
state for a given power allocation using results of [6]. Then,
plugging these sequences in (15), and noting that the signature
sequences that maximize the sum capacity for a fixed set of power
constraints satisfy (7), we get

Aks
∗
k = (σ2 + µk − hkpk)s

∗
k (16)

where µk are given by (8). Therefore,

s∗>k A−1
k s∗k =

1

σ2 + µk − hkpk
(17)

This shows that, we can represent the base level for the waterfill-
ing in (14) as a function of the power levels in the previous itera-
tion. Substituting this in (14), we get the optimal power allocation
at the n+ 1st step, pn+1

k (h) for user k, with optimal sequences
and fixed powers {pi(h)}i6=k from the previous iteration

pn+1
k (h) =

(

1

λk
−
σ2 + µnk (h)− hkp

n
k (h)

hk

)+

(18)

where we use {pn+1
1 (h), · · · , pn+1

k−1(h), p
n
k (h), · · · , p

n
K(h)} to

compute µnk (h). Combining this with (8) gives us the power
update at each step. It is easy to observe that, once the eigenvalues
µnk (h) are determined using the power levels from the previous
iteration, we can use (18) to solve for kth user’s power by
waterfilling.

The proposed algorithm may be interpreted in two ways. First,
it may be seen as an iteration from a set of powers to another
set of powers as given by (18). Therefore, one may run this
algorithm starting with an arbitrary power distribution, to obtain
the capacity maximizing power distribution when the algorithm
converges. The signature sequences may then be assigned to the
users after the algorithm converges: at each channel state, the
users that have non-zero powers (there will be at most N such
users) are assigned signature sequences from an orthogonal set.
Second, the algorithm may be seen as an iteration from powers to
signature sequences, and then back to powers again. Specifically,
for a given set of powers, the optimal sequences may be found
using (7) and (8), i.e., as in [6]; corresponding to these sequences,
base levels for the waterfilling in (14) can be computed using (16)
and (17), and new powers may be found using (14) as in [1].

We will now show that (18) and equivalently the sequential
signature sequence and power update algorithm indeed converges
to the global optimum of the sum capacity function. To see this,
first observe that for fixed signature sequences, the update (14)
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is the best one-user-at-a-time power update and is guaranteed
to give a non-decreasing sequence of sum capacity values [1].
Similarly, for fixed powers, the signature sequence update will
increase (or keep constant) the value of the sum capacity. The
sum capacity is upper bounded, therefore it is guaranteed that the
sequence of non-decreasing sum capacity values obtained through
these iterations have a limit. Moreover, the algorithm terminates
if and only if the update (18) yields a fixed point p(h). Since
the fixed point is characterized by pn+1 = pn, it is easy to see
that the fixed point of the update (18) actually satisfies the KKT
conditions for our original problem. Since the convergence point
p(h) satisfies the KKT conditions, it achieves the global optimum
of the sum capacity, proving the convergence of the sequential
algorithm.

Next, we demonstrate the performance and results of the above
algorithm. In all of our simulations, we pick σ2 = 1, the
average power of each user to be 1, the initial power distribution
uniformly, and the probability distribution of the channel to be
uniform. Firstly, we simulate a system where the number of users
is equal to the processing gain: K = N = 3. In this case, by
our arguments in Section III, we expect the optimal signature
sequences to be three orthogonal sequences. Figure 1 shows the
convergence of our algorithm, together with the convergence of
the iterative waterfilling algorithm in [1] for fixed sequences.
When we optimize the powers and signature sequences jointly, we
see that the sum capacity achieved is identical to that of a system
with fixed orthogonal sequences, meaning channel adaptive and
non-adaptive sequence selections give us the same capacity value.
Our algorithm in this case converges to the optimum in one round
of iterations (one iteration for each user). The capacity achieved
by a randomly generated signature sequence matrix S containing
unit-norm sequences is also given for comparison.

The convergence plots for a more interesting case where
K = 4, N = 3 are given in Figure 2. Here, we again compare
the capacity achieved by our algorithm to some fixed randomly
generated sequences, and we see that we get a higher capacity.
We also compare our result to a fixed set of WBE sequences,
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which are the optimum sequences for a fixed channel state and
equal average received powers. The iterative waterfilling with
sequence optimization again achieves a better sum capacity. Also
remarkably, the transmit strategy is such that at most 3 of the 4
users transmit together (on a region with non-zero probability,
after eliminating the states where the channel states of any two
users are equal), and they are allocated orthogonal sequences.
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