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Abstract—We solve for the optimum signature sequence and power
allocation policies that maximize the information-theoretic ergodic sum
capacity of a code-division multiple-access (CDMA) system subject to
fading. We show that at most users may transmit at any given channel
state, where is the processing gain; and those users who are transmit-
ting should be assigned orthogonal signature sequences. We also show
that the power allocation policy that maximizes the capacity together with
the choice of these signature sequences is single-user water-filling over
sets of channel states that are favorable to each user. That is, the capacity
maximizing signaling scheme is shown to dictate that the users allocate
their powers and signature sequences in such a way that they always avoid
interference from each other.

Index Terms—Code-division multiple access (CDMA), fading channels,
interference avoidance, iterative water-filling, power control, signature se-
quence optimization, sum capacity.

I. INTRODUCTION

An important consideration in the design of wireless communication
systems is the unavoidable presence of fading, caused by the nature
of the system. To maximize the overall network capacity, one should
therefore exploit the variations in the channel fade levels while allo-
cating the available resources. Resource allocation for wireless systems
can be viewed in several different contexts, including the signal-to-in-
terference ratio (SIR)-based approaches and information theoretic ap-
proaches (see [2] for some references on both). We can also group the
allocation schemes according to the type of resources that are allo-
cated. Two important resources are the transmit powers and the transmit
waveforms. Power control has been studied in SIR-based and infor-
mation-theoretic contexts for fading and nonfading channels [2]–[5],
whereas waveform optimization has been studied in these two contexts
for nonfading channels only [6]–[8]. Throughout this correspondence,
the objective of resource allocation is to maximize the information-the-
oretic ergodic (expected) sum capacity, and we consider allocating both
powers and the waveforms as functions of the channel state informa-
tion (CSI) in order to achieve this objective. The system of interest is
assumed to be a code-division multiple-access (CDMA) network; thus,
waveforms will simply be referred to as signature sequences.
The problem of power control in the context of capacity maximiza-

tion for fading channels is first studied in [3] for a single-user channel,
and it is shown that the optimum power allocation policy that maxi-
mizes the ergodic channel capacity subject to an average power con-
straint is a water-filling of power over the inverse of the fade levels. In
this policy, more power is allocated to stronger channel states; and no
power is allocated for channel states below some threshold.
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Although we can define the capacity for a single-user channel, when
wemove ontomultiple-access channels (MACs), the notion of capacity
has to be replaced by a region of achievable rates [9], [10]. In such
channels, it is customary to consider the maximum achievable sum of
rates, i.e., the sum capacity as a figure of merit. For a multiuser scalar
channel, where all users transmit with the same waveform, [4] finds the
optimum power allocation policy whichmaximizes the ergodic sum ca-
pacity. There, it is shown that, to maximize the sum capacity, the users
perform single-user water-filling over disjoint sets of channel states.
That is, each user transmits only when its channel state (normalized
by a factor) is greater than or equal to that of all other users. Since the
channel fading is a continuous random variable, the equality of the two
ratios corresponds to a zero probability event. Thus, for such a channel,
at most one user transmits at a given channel state with probability 1.

For vector multiple-access channels, such as CDMA, [11] proposes
an asymptotically optimal single-user water-filling strategy to maxi-
mize the ergodic sum capacity in the special case of a large system
with random signature sequences. The more generalized version of the
power control problemwith arbitrary signature sequences and arbitrary
number of users and processing gain is solved in [2], where the solu-
tion is shown to be a simultaneous water-filling of powers of users, and
an iterative algorithm which performs a one-user-at-a-time single-user
water-filling for each user, while the powers of all other users are fixed,
is shown to converge to the optimal solution. The optimum power al-
location in that case is shown to dictate more than one user to transmit
simultaneously in certain regions of the channel state space, provided
that the signature sequences satisfy some mild conditions.

The sum capacity of a CDMA network can also be optimized as a
function of the signature sequences. When each user has an average
power constraint, and there is no fading in the system, [6] shows that
when the number of users is less than or equal to the processing gain,
the optimal strategy is to allocate orthogonal signature sequences to all
users, and when the number of users is greater than the processing gain,
with all users having the same average power constraint, the optimal
strategy is to allocate Welch bound equality (WBE) [12] sequences.
[7] generalizes [6] to arbitrary (unequal) average power constraints,
and gives the optimal signature sequence allocation as a function of
the power constraints of the users. Specifically, for the case in which
the number of users is greater than the processing gain, when a user has
a relatively larger power constraint then the others, it is called “over-
sized,” and such users are allocated orthogonal signature sequences;
whereas the “nonoversized” users are allocated the so-called general-
ized Welch-bound-equality (GWBE) sequences.

In this correspondence, we attack the problem of joint power and
signature sequence optimization in order to maximize the ergodic sum
capacity of a fading CDMA system. Specifically, we adapt the set of
signature sequences and transmit powers of all users as a function of
the CSI, in order to maximize the ergodic sum capacity. At each fading
state, for any given arbitrary power allocation, results of [7] can be used
to allocate the optimal sequences. Among those power allocations, with
signature sequences chosen optimally, we find the best power allocation
strategy.

We show that the optimal strategy is still a water-filling strategy for
each user, and very strikingly, at each fading state, that strategy dic-
tates that we allocate (at most)N orthogonal signature sequences to the
users with best (at most)N channel states (scaled by a factor as in [4]).
Moreover, the other users with worse channel states than the users with
orthogonal sequences do not transmit at those particular channel states.
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This means that there are no users in the system which are allocated
GWBE sequences and are yet transmitting with nonzero powers. Thus,
in contrast to signature sequence optimization for nonfading channels,
GWBE sequences are never used in transmissions; more precisely, they
are used only with zero probability.
Our solution resembles [4] in the sense that there is an ordering of

channel states that determines which users will transmit, but it also
resembles the solution in [3] in that once we know which users will
transmit at each channel state, all users will choose their powers as
if they were alone in the system, i.e., they will perform single-user
water-filling over favorable regions of the channel state space. This
result shows that, when we have the opportunity to control both the
signature sequences and the powers of the users, the users completely
avoid each other, i.e., certain groups of users transmit on disjoint sets
of channel states, and within each group of users that transmit at the
same channel state, users place themselves orthogonal to each other in
the signature sequence space, thus avoiding any possible interference.
Finally, we provide an iterative algorithm that is guaranteed to con-

verge to the optimal power and signature sequence allocation. The al-
gorithm performs a one-user-at-a-time water-filling, and converges to
the optimum solution described above.

II. PROBLEM DEFINITION

We consider a CDMA system with processing gain N , where allK
users transmit to a single receiver. In the presence of fading andAWGN,
the received signal vector is given by [13]

rrr =

K

i=1

pihibisssi + nnn (1)

where sssi = [si1; . . . ; siN ]>, pi, hi, bi are the unit energy signature
sequence, transmit power, channel gain, and information symbol, re-
spectively, of user i, and nnn is a zero-mean Gaussian random vector
with covariance �2IIIN . The information symbol bi is assumed to have
unit energy, i.e., E[b2i ] = 1. We assume that the receiver and all of the
transmitters have perfect knowledge of the channel states of all users
represented as a vector hhh = [h1; . . . ; hK ]>. We further assume that
although the fading is slow enough to ensure constant channel gain in
a symbol interval, it is fast enough so that within the transmission time
of a block of symbols the long-term ergodic properties of the fading
process can be observed [14].
For a given set of signature sequences and a fixed set of channel gains

hhh, the sum capacity Csum(hhh; �ppp;SSS) is [10]

Csum(hhh; �ppp;SSS) =
1

2
log det IIIN + �

�2
K

i=1

hi�pisssisss
>

i (2)

where �pi is the average power of user i, �p�p�p = [�p1; . . . ; �pK ], and SSS =

[sss1; . . . ; sssK ]. To maximize the above capacity for that particularhhh, one
can choose the signature sequences of the users for a given set of power
constraints. An equivalent problem is solved in [7], in the no-fading
case, i.e., hi = 1, for all i.
In the presence of fading, if the channel state is modeled as a random

vector, the quantity Csum(hhh; �p�p�p;SSS) is random as well, and the ergodic
sum capacity is found as the expected value of Csum(hhh; �ppp;SSS). Instead
of keeping the transmit power of user i fixed to �pi as in (2), we can
choose the transmit powers of the users pi(hhh), i = 1; . . . ; K , as a func-
tion of the channel state with the aim of maximizing the ergodic sum
capacity of the system subject to average transmit power constraints
for all users. Similarly, we can choose the signature sequences SSS to

be a function of the channel state as well; let us denote it by SSS(hhh) to
show the dependence on the channel state. Therefore, our problem is to
solve for the jointly optimum transmit powers and signature sequences
as a function of the channel state in order to maximize the ergodic sum
capacity of the system in the presence of fading. The problem can be
stated as

max
ppp(hhh);SSS(hhh)

log det IIIN +

K

i=1

hipi(hhh)

�2
sssi(hhh)sssi(hhh)

>
f(hhh)dhhh

s.t. pi(hhh)f(hhh)dhhh = �pi; pi(hhh) � 0 (3)

where f(hhh) denotes the probability density function of the channel
state vector.

III. JOINT SIGNATURE SEQUENCE AND POWER ALLOCATION

In order to jointly optimize the powers and signature sequences, we
first fix power distributions of all users over all fading states. Then, the
corresponding optimal signature sequence set at every channel state
will consist of a combination of orthogonal and GWBE sequences [7].
This is due to the fact that the signature sequences at a fading state hhh
can be chosen independently of the signature sequences at any other
state, since once the powers are fixed, there are no constraints relating
SSS(hhh) to SSS(�hhh) for hhh 6= �hhh. Since the optimum signature sequences at
each channel state depend only on powers ppp(hhh) and the channel statehhh,
we can express the capacity at each channel state only as a function of
the powers, and optimize the ergodic capacity in terms of the power al-
location. Let us define the signature-sequence-optimized-sum-capacity
at channel state hhh for a given power control policy ppp(hhh) by

Copt(hhh; ppp(hhh)) max
SSS(hhh)

Csum(hhh; ppp(hhh); SSS(hhh)) (4)

where Csum(hhh; ppp(hhh); SSS(hhh)) is the argument of the expectation in the
objective function of (3), i.e., it is the function in (2) where �ppp is replaced
by ppp(hhh) and SSS is replaced by SSS(hhh). For a fixed hhh, it can be shown
using majorization theory that Copt(hhh; ppp(hhh)) is a concave function of
the power vector at channel state hhh, ppp(hhh) [15, Proposition 2.2]. Then,
the problem in (3) can be written only in terms of the powers as

max
ppp(hhh)

Copt(hhh; ppp(hhh))f(hhh)dhhh

s.t. pi(hhh)f(hhh)dhhh = �pi; pi(hhh) � 0: (5)

First consider the case when K � N . For any fixed channel
state, the optimal choice of signature sequences for a given power
control policy ppp(hhh) is an orthogonal set [6], [7]. Noting that the
received power levels are pi(hhh)hi, (5) is equivalent to solving K

independent Goldsmith–Varaiya problems [3] (see also [2]), the
solution to which is a single user water-filling for each user. More
precisely, the optimal solution ppp�(hhh) is the unique solution satisfying
the Karush–Kuhn–Tucker (KKT) conditions, and is given by

p
�

i (hhh) =
1

�i
�

�2

hi

+

; i = 1; . . . ; K (6)

where �i is solved by plugging (6) into (5).
One remarkable observation is that in obtaining Copt(hhh; ppp(hhh)), it is

possible to adopt a channel nonadaptive signature sequence allocation
policy, i.e., each user can be assigned a designated signature sequence,
which it can use at all channel states, as long as the signature sequences
in this set are orthogonal. A channel adaptive scheme will also perform
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equally well as long as the signature sequences we choose at each hhh
are from an orthogonal set.
When K > N , it has been shown in [7], for a nonfading channel,

that given the power constraints of all users, one can group the users
into two sets L and �L, of oversized and nonoversized users, respec-
tively. Users i 2 L are assigned orthogonal sequences, and users i 2 �L

are assigned GWBE sequences. For a channel with fading, at a certain
channel state hhh, and for a certain arbitrary power distribution of users
which assigns powers p1; . . . ; pK to channel state hhh, let us define the
matrix DDD diag(p1h1; . . . ; pKhK), and define �i to be the eigen-
values of the matrix SDSSDSSDS>. Then the signature sequences that maxi-
mize the sum capacity for any fixed hhh satisfy [16],

SDSSDSSDS>sssi = �isssi; i = 1; . . . ; K (7)

clearly with repetitions of some of the �i’s (since there are only N
eigenvalues of SDSSDSSDS>), where the optimal �i’s are given by [7]

�i(hhh) =
p h

N�jL(hhh)j
; i 2 �L(hhh)

pihi; i 2 L(hhh:)
(8)

In the fading case with channel adaptive powers, as suggested by the
results in [2]–[4], it is likely that some users will have powers equal
to zero at some channel states, and they will not contribute to Csum at
those channel states. Although the concept of oversized users is defined
for users with nonzero average power constraints, since users which are
allocated zero power at state hhh will not contribute to the sum capacity,
we can add them to the set of nonoversized users at channel state hhh,
�L(hhh), and we can assume that we assign arbitrary sequences for those
users without changing the solution. Note however that, while finding
the set of oversized users, we will disregard the users with zero power.
Using the optimum eigenvalue assignment in (8) at each state, the ob-
jective function of the problem (5) can be expressed in the alternative
form

i2L(hhh)

log 1 +
pi(hhh)hi
�2

+(N � jL(hhh)j) log 1 +
i2�L(hhh) pi(hhh)hi

�2(N � jL(hhh)j)
f(hhh)dhhh: (9)

For a given channel statehhh, let the set of users that will transmit with
nonzero powers be �K(hhh). Then the number of users in �K(hhh) cannot
exceed N , as stated by the following theorem.

Theorem 1: Let �K(hhh) be a subset of f1; . . . ; Kg, such that
8i 2 �K(hhh), p�i (hhh) > 0, where ppp�(hhh) is the maximizer of (9). Then,
j �K(hhh)j � N , almost surely.

Proof: By concavity of Copt(hhh; ppp(hhh)), it is clear that the func-
tion in (9) is concave, and the maximization in (5) is over an affine set
of constraints. Therefore, a power vector ppp�(hhh) achieves the global op-
timum of the maximization problem if and only if it satisfies the KKT
conditions. Then, writing the KKT conditions for the objective func-
tion in (9), it is easy to show that

hi
�i(hhh) + �2

� �i; 8hhh (10)

where �i(hhh) is given by (8), and equality holds if pi(hhh) > 0. Now,
let us assume that the number of nonzero components in ppp�(hhh) is
j �K(hhh)j > N , for a given hhh. Then, some users must share some of
the available dimensions, i.e., not all users can be made orthogonal
to each other. In fact, we can find at most N � 1 sequences that are

orthogonal to all other sequences in the system, or equivalently, at
least jK(hhh)j � N + 1 users will have the same

�i(hhh) =

j2�L(hhh)

hjpj=(N � jL(hhh)j):

Then, substituting this into (10), we get hi=�i = hj=�j for i 6= j,
i; j 2 �K(hhh) for at least j �K(hhh)j�N+1 users. Note that as the channel
fading is assumed to be a continuous random variable, this event has
zero probability, and at most one user with GWBE sequences (one with
highest hi=�i ratio, as in [4]) may transmit, with probability 1. But this
contradicts the assumption that j �K(hhh)j > N , which establishes our
main result, i.e., j �K(hhh)j � N almost surely.

This result may be viewed as a generalization of [4] to a vector
channel with a unit rank constraint on the covariance matrices of the
inputs; [4] showed that in scalar MAC (i.e., whenN = 1), at most one
user may transmit at a channel state with probability 1. An important
implication of Theorem 1 is that, since the optimal power allocation
dictates that at mostN users transmit with positive powers at any given
channel state, orthogonal sequences should be assigned to those users
that are transmitting with positive powers. That is, although we allowed
for allocating GWBE sequences to some of the users, the solution im-
plies that there is at most one such user, and the problem reduces to
the orthogonal case. The optimal power allocation is again single-user
water-filling, similar to the solution given in (6), i.e.,

p�i (hhh) =
1
�

� �

h
; i 2 �K(hhh)

0; otherwise.
(11)

Here, one needs to be careful about the transmit regions. Unlike the case
where the actual number of users K � N , the users in the set �K(hhh)

change with hhh, thus, a channel adaptive allocation of the orthogonal
sequences is necessary. Our convention is that we assign a sequence
from an orthogonal set to a user wherever its power is positive.
To specify the optimal power allocation completely, let us define


i = hi=�i. Then, the probability that 
i = 
j , for i 6= j is zero.
Therefore, we can always find a unique order statistics f
[i]g

K
i=1 such

that 
[1] > � � � > 
[K], for each given hhh. Let us now place �2 in
that ordering, assuming that at least one of the 
[i]’s is larger than �

2.
Define 
[K+1] = 0. Then, for some n 2 f1; . . . ; Kg, let


[1] � � � � � 
[n] > �2 � 
[n+1] � � � � � 
[K+1] (12)

where the equalities are included for the sake of consistency of the
indices, and do not affect the solution (note the strict inequality just
before �2).
First, let n � N . Then, we see that (11) gives positive powers for

all n users, and thus all n users with highest 
i’s will transmit with the
nonzero powers given in (11). When n > N , there are more than N
users satisfying the positivity constraints 
i > �2. However, we know
from our derivation that only the user with the highest 
i from the set
we intend to assign GWBE sequences may transmit. Therefore, a total
of N users with the highest 
i’s transmit at this channel state.
Finally, we can summarize the jointly optimal power and signature

sequence allocation policy as

p�i (hhh) =
1
�

� �

h
; iff i 2 


0; otherwise

sss�i (hhh)
>sss�j (hhh) = 0; i 6= j; 8 i; j 2 



= i : 
[i] > �2; i�minfK;Ng : (13)
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IV. ITERATIVE POWER AND SEQUENCE OPTIMIZATION

We found in the preceding section that the optimal power control
strategy is a water-filling over some favorable channel states for each
user. However, in order to obtain the optimal power levels one should
also compute the Lagrange multipliers �i, from the average power con-
straints. It turns out that the power allocation of each user still depends
in a complicated fashion to those of the other users through these �i.
In this section, we provide an iterative method to obtain the jointly op-
timal power and signature sequence allocation, and hence the �i.
In [2], we have shown that for fixed signature sequences SSS, the op-

timal single-user update that maximizes the sum capacity as a function
of pk(hhh) is given by

pk(hhh;SSS) =
1

�k
�

1

hksss>kAAA
�1
k
sssk

+

(14)

where the interference covariance matrix AAAk is defined as

AAAk =�2IIIN +
i 6=k

hipi(hhh)sssisss
>
i

=�2III + SDSSDSSDS> � hkpk(hhh)sssksss
>
k : (15)

We can find and fix the optimal signature sequences at each state
for a given power allocation using results of [7]. Then, plugging these
sequences in (15), multiplying both sides by the optimal signature se-
quence sss�k , and noting that the signature sequences that maximize the
sum capacity for a fixed set of power constraints satisfy (7), we get

AAAksss
�
k = (�2 + �k � hkpk)sss

�
k (16)

where �k are given by (8). Therefore,

sss�>k AAA�1
k
sss�k =

1

�2 + �k � hkpk
: (17)

This shows that we can represent the base level for the water-filling in
(14) as a function of the power levels in the previous iteration. Substi-
tuting this in (14), we get the optimal power allocation at the n + 1th
step, pn+1

k
(hhh) for user k, with optimal sequences and fixed powers

fpi(hhh)gi6=k from the previous iteration

pn+1
k

(hhh) =
1

�n+1
k

�
�2 + �nk(hhh)� hkp

n

k (hhh)

hk

+

; 8hhh (18)

where we use fpn+11 (hhh); . . . ; pn+1
k�1(hhh); p

n

k (hhh); . . . ; p
n

K(hhh)g to com-
pute �nk(hhh). Combining this with (8) gives us the power update at each
step. It is easy to observe that, once the eigenvalues �nk(hhh) are de-
termined using the power levels from the previous iteration, we can
use (18) to solve for kth user’s power by water-filling. Note that, the
Lagrange multiplier �n+1

k
is chosen to satisfy the average power con-

straint of user k at each iteration, and can be obtained by plugging (18)
into the constraint in (3). The water-filling algorithm automatically ob-
tains the value of �n+1

k
as it is the inverse of the “water level.”

The proposed algorithmmay be interpreted in twoways. First, it may
be seen as an iteration from a set of powers to another set of powers as
given by (18). Therefore, one may run this algorithm starting with an
arbitrary power distribution, to obtain the capacity-maximizing power
distribution when the algorithm converges. The signature sequences
may then be assigned to the users after the algorithm converges: at each
channel state, the users that have nonzero powers (there will be at most
N such users) are assigned signature sequences from an orthogonal
set. Second, the algorithm may be seen as an iteration from powers to

signature sequences, and then back to powers again. Specifically, for
a given set of powers, the optimal sequences may be found using (7)
and (8), i.e., as in [7]; corresponding to these sequences, base levels for
the water-filling in (14) can be computed using (16) and (17), and new
powers may be found using (14) as in [2].

We will now show that (18) and, equivalently, the sequential sig-
nature sequence and power update algorithm indeed converges to the
global optimum of the sum capacity function. To see this, first ob-
serve that for fixed signature sequences, the update (14) is the best one-
user-at-a-time power update and is guaranteed to give a nondecreasing
sequence of sum capacity values [2]. Similarly, for fixed powers, the
signature sequence update will increase (or keep constant) the value
of the sum capacity. The sum capacity is upper-bounded, therefore, it
is guaranteed that the sequence of nondecreasing sum capacity values
obtained through these iterations have a limit. Moreover, the algorithm
terminates if and only if the update (18) yields a fixed point ppp(hhh). Since
the fixed point is characterized by pppn+1 = pppn, it is easy to see that the
fixed point of the update (18) actually satisfies the KKT conditions for
our original problem. Since the convergence point ppp(hhh) satisfies the
KKT conditions, it achieves the global optimum of the sum capacity,
proving the convergence of the sequential algorithm.
Note that we have incorporated the eigenvalues of SDSSDSSDS> in the

power iteration (18) rather than including the signature sequences ex-
plicitly. This implementation is very useful, since it does not require
us to compute the signature sequences at intermediate steps. Finally,
it is useful to point out that, although the power allocation policy that
maximizes the sum capacity is unique, the signature sequence selec-
tion that is jointly optimal with this power allocation is not, for two
reasons: first, because of the arbitrariness of the optimal sequences for
users with zero powers; and second, because of the fact that even for
users with nonzero powers, there are infinitely many sets of orthogonal
sequences.

V. NUMERICAL EXAMPLES

First, we simulate a system where the number of users is equal to
the processing gain: K = N = 3. In all of our simulations, we pick
�2 = 1, the average power of each user to be 1, the initial power dis-
tribution uniformly, and the probability distribution of the channel to
be uniform on the intervals shown in the figures. In this case, by our
arguments in Section III, we expect the optimal signature sequences to
be three orthogonal sequences. Fig. 1 shows the convergence of our al-
gorithm, together with the convergence of the iterative water-filling al-
gorithm in [2] for fixed sequences. When we optimize the powers and
signature sequences jointly, we see that the sum capacity achieved is
identical to that of a system with fixed orthogonal sequences, meaning
channel adaptive and nonadaptive sequence selections give us the same
capacity value. The power allocation strategy corresponding to the or-
thogonal signature sequences found by the algorithm is independent
one-user-at-a-time water-filling for each user. Fig. 1 shows the sum ca-
pacity versus per user iterations, where one full cycle of the algorithm
is equivalent to K = 3 iterations. In this case, while the algorithm
stops after 18=3 = 6 cycles for a threshold value of 10�7 on the mean
squared difference in power, i.e., E[(pn+1

i
(hhh)� pni (hhh))

2] < 10�7 for
all users i, it converges to the optimum sum capacity value in practi-
cally one cycle of iterations (one iteration for each user). The capacity
achieved by a randomly generated signature sequence matrix SSS con-
taining unit-norm sequences is also given for comparison; as expected,
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Fig. 1. Convergence of sum capacity forK = N = 3.

the sum capacity for that matrix SSS is inferior to the orthogonal se-
quences case.

The convergence plots for a more interesting case where K = 4,
N = 3 are given in Fig. 2. Here, we again compare the capacity
achieved by our algorithm to some fixed random sequences, and we
see that we get a higher capacity. We also compare our result to a
fixed set of WBE sequences, which are the optimum sequences for a
fixed channel state and equal average received powers. The iterative
water-filling with sequence optimization again achieves a better sum
capacity. The algorithm again stops after 25=4 �= 6 cycles, converging
to sum capacity in practically one cycle of iterations. Also remarkably,
the transmit strategy is such that at most three of the four users transmit
together (on a region with nonzero probability, after eliminating the
states where the channel states of any two users are equal), and theyare
allocated orthogonal sequences. Fig. 3(a)–(d) further illustrates the de-
tails of the power and signature sequence allocation.

Fig. 3(a) and (b) pertains to a plane in four-dimensional channel state
space, where we pick h3 = h4 = 0:4, and observe the power distribu-
tion of users 1 and 2 as a function of their channel states. The gray levels
correspond to the amount of power allocated, lighter colors indicating
more power. Clearly, the users perform single-user water-filling for the
chosen channel states, and their powers do not depend on fading states
and powers of each other. As h3 = h4 = 0:4, from (13) we expect
that users 1 and 2 would transmit when their channels are better than
0:4, with orthogonal sequences, and hence the single-user water-filling.
Note that, according to the notion in [7], users 1 and 2 are oversized
whenever their channel gains are better than 0:4.
Fig. 3(c) and (d) corresponds to a case where we pick the maximum

possible values for the channel states h3 and h4, i.e., h3 = h4 =

0:9, so that except for the degenerate equality cases, users 3 and 4 will
always be oversized on the plane of channel states we consider. Then,
the remaining user, according to our results, should transmit if and only
if it has the next best channel (note that since channels are all taken to
be identically distributed, the �i’s are the same for all users and they
do not affect the ordering). This is what is observed in Fig. 3(c) and (d),

Fig. 2. Convergence of sum capacity forK = 4,N = 3.

Fig. 3. Cross sections of power distributions for users 1 and 2. (a) Power
distribution of user 1 when h3 = h4 = 0:4. (b) Power distribution of user 2
whenh3 = h4 = 0:4. (c) Power distribution of user 1 whenh3 = h4 = 0:9.
(d) Power distribution of user 2 when h3 = h4 = 0:9.

the stronger of users 1 and 2 perform single-user water-filling, and the
weaker one remains silent, as in the Knopp–Humblet [4] solution. The
arbitrariness in powers in the equal channels case is again observed,
and is consistent with our previous arguments.
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VI. CONCLUSION

For a CDMA system subject to fading, we showed that the ergodic
sum capacity is maximized by allocating orthogonal signature se-
quences tomin(N; K) of the users with favorable channel states, and
allocating powers to those users by a single-user water-filling strategy
over some partitions of channel state space. In each partition, a group
of users perform orthogonal transmissions, thus, the users avoid any
interference from each other in order to maximize the sum capacity.
We also proposed an iterative signature-update/power-water-filling
algorithm to find the optimal allocation of signature sequences and
powers numerically, and proved its convergence to the globally op-
timum solution.
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A Distribution Dependent Refinement of
Pinsker’s Inequality

Erik Ordentlich, Member, IEEE, and
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Abstract—Given two probability distributions and , let
and ( ), respectively, denote the distance and divergence be-
tween and .We derive a refinement of Pinsker’s inequality of the form

( ) ( ) and characterize the best -dependent
factor ( ). We apply the refined inequality to large deviations and mea-
sure concentration.

Index Terms—Divergence, Hoeffding’s inequality, distance, measure
concentration, Pinsker’s inequality, Sanov’s theorem.

I. PRELIMINARIES

Let A denote the finite set f1; 2; . . . ; ag. For two probability distri-
butions Q and P on A, let

kQ� Pk1 =

a

k=1

jQ(k)� P (k)j

denote the variational, or L1, distance between Q and P , and let

D(QkP) =

a

k=1

Q(k) log
Q(k)

P (k)
(1)

denote the divergence between Q and P , where throughout log(�) de-
notes the natural logarithm.
For 0 � p1, p2 � 1, let

d(p1kp2) = p1 log
p1
p2

+ (1� p1) log
1� p1
1� p2

(2)

denote the binary divergence, whereas for (p1; p2) =2 [0; 1]2 we set
d(p1kp2) = 1.
The following conventions implied by continuity are adopted: for

c > 0, c=0 = 1, c=1 = 0, c1 = 1, log1 = 1, e�1 = 0.
Additionally, in (1) and (2), it is assumed that 0 log(0=0) = 0 and
0 log 0 = 0.
For p 2 [0; 1=2), we define [4]

'(p) =
1

1� 2p
log

1� p

p
(3)

and, by continuity, set '(1=2) = 2.
For a probability distribution P on A, we define

�P = max
A�A

minfP (A); 1� P (A)g: (4)

Note that �P � 1=2 for any P .
Finally, throughout we take theminimumof a function over an empty

set to be1.

II. REFINED PINSKER’S INEQUALITY

We refine Pinsker’s inequality ([2, Problem 3.17], [1, Lemma
12.6.1]) relating the L1 distance to the divergence as follows.
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