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Abstract

We characterize the optimum power allocation policy that maximizes the information
theoretic sum capacity of a code division multiple access (CDMA) system where the
users are assigned arbitrary signature sequences in a frequency flat fading environment.
We provide an iterative waterfilling algorithm to obtain the powers of all users at all
channel fade levels, and prove its convergence to the optimum solution. Under certain
mild conditions on the signature sequences, the optimum power allocation dictates that
more than one user transmit simultaneously in some non-zero probability region of the
space of all channel states. We identify these conditions, and provide an upper bound on
the maximum number of users that can transmit simultaneously at any given time.

1 Introduction

Fading may be an important limiting factor in wireless communication networks unless
appropriate resource allocation is applied to exploit the variations in the channel gains to
the advantage of the network capacity. The resources that we concentrate on allocating
optimally in this paper are the transmit powers of the users. The quality-of-service based
power control approaches assign transmit powers to the users so that all users satisfy their
signal-to-interference-ratio (SIR) requirements while transmitting with the least amount
of power. The SIR-based power control assigns powers to the users with the aim of
compensating for the variations in the channel; it assigns more power to the users with
bad channel states, and less power to the users with good channel states [1–4].

For a single-user fading channel, [5] shows that the optimum power allocation policy,
in the sense of maximizing the ergodic channel capacity, is a waterfilling of power in
time. The optimum power allocation policy allocates more power to the stronger channel
states, and less power to the weaker channel states; it allocates zero power to the channel
states below a threshold level which is determined by the fading statistics.

The capacity of a multiple access channel is expressed as a region of achievable rates
[6], and sum capacity, the maximum achievable sum of rates, is often used as a measure
of the overall network capacity. For a multiuser scalar channel, [7] finds the optimum
power allocation policy which maximizes the ergodic sum capacity of the network. The
multiple access scheme in [7] is scalar in the sense that all users transmit with the same
waveform. For this system, it was shown that the optimum power allocation policy is

∗This work was supported by NSF Grant ANI 02-05330.



one where each user compares its channel state (normalized by a factor depending on
the statistical characterization of the fading) to those of the other users, and transmits
with non-zero power only if its normalized channel state is better than or equal to the
normalized channel states of all other users. More than one user transmits simultaneously
only if the normalized channel states of multiple users are the same. Since the channel
gains are continuous random variables, this occurs only with zero probability. Therefore,
this power control policy implies that at most one user transmits (if at all) at any given
time with probability one.

For a multiple access channel with multiple antennas, [8] solves for the optimal power
allocation at all transmit antennas and gives a relationship between the maximum number
of active transmit and receive antennas. The problem of maximizing the sum capacity
as a function of the transmit powers in a vector multiple access channel, such as a
CDMA or multiple transmit antenna system, in fading channels, is studied for the case
of large systems and random transmit vectors in [9] where a simple single-user waterfilling
strategy is proposed and shown to be asymptotically optimal.

In this paper, we focus on the power control problem for a CDMA system in a fading
channel where the number of users and the processing gain are finite and arbitrary,
and the users are assigned arbitrary deterministic signature sequences. Our problem
reduces to K independent Goldsmith-Varaiya problems [5] when the signature sequences
are chosen to be orthogonal, and to a Knopp-Humblet problem [7] when the signature
sequences are chosen to be identical. We show that the optimum power allocation policy
is a simultaneous waterfilling policy that requires the solution of a set of highly nonlinear
equations. We develop an iterative power allocation policy, where, at each step, only
one user allocates its power optimally over all channel states of all users when the power
allocations of all other users are fixed. The power allocation of each user in this iterative
process is a waterfilling where the base level of the water tank is determined by the inverse
of the SIR the user would obtain at the output of a minimum mean squared error (MMSE)
receiver if it transmitted with unit power. When the signature sequences are orthogonal,
this “base level” becomes the inverse of the SNR, and when the signature sequences are
identical, it becomes the inverse of the SIR found at the output of a matched filter (MF),
since in this case, the MMSE receivers reduce to MFs.

We prove the convergence of our algorithm to an optimum solution, and provide
conditions for the uniqueness of the solution. One of the questions of interest, for an
arbitrary set of signature sequences, is whether there exists a set of channel states having
a non-zero probability where all users transmit simultaneously. In the case of orthogonal
signature sequences, for instance, all users transmit simultaneously in an orthant of the
space of all channel states where the channel states of all users exceed their corresponding
thresholds; and, clearly, this region has a non-zero probability. In the case of identical
signature sequences however, users transmit simultaneously only on a half-line in the
space of all channel states; and, this region has a zero probability [7]. In the most
general case, the existence of a region of channel states with non-zero probability where
all users transmit simultaneously depends on the number of users, the dimensionality of
the signal space (processing gain), and the particular set of signature sequences being
used. We show that under certain mild conditions on the signature sequences, such a non-
zero probability region of channel states exists. This is a result of the fact that CDMA
scheme with non-identical signature sequences provides users with multiple degrees of
freedom; therefore, the users do not have to avoid each other completely in the space of
all channel states, that is, multiple users can share some of the channel states that are
favorable to all of them.



2 System Model

We consider a CDMA system with processing gain N where all K users transmit to a
single receiver. In the presence of fading and AWGN, the received signal is given by,

r(t) =
K∑

i=1

√
pihibisi(t) + n(t) (1)

where, for user i, bi denotes the information symbol with E[b2i ] = 1, si(t) denotes the
unit energy signature waveform,

√
hi denotes the random channel gain, and pi denotes

the transmit power, respectively, and n(t) denotes the AWGN with zero-mean and power
spectral density σ2. The signature waveforms can be represented by N orthonormal basis
waveforms {ψj}N

j=1, such that si(t) =
∑N

j=1 sijψj(t), where sij = 〈si(t), ψj(t)〉. Project-
ing the received signal onto the basis waveforms, i.e., rj = 〈r(t), ψj(t)〉, we obtain the
sufficient statistics {rj}N

j=1. Therefore, the continuous channel in (1) can be represented
in an equivalent vector form as [10],

r =

K∑
i=1

√
pihibisi + n (2)

where si = [si1, · · · , siN ]� is the signature sequence of user i, and n is a zero-mean
Gaussian random vector with covariance σ2IN . We assume that the receiver and all of
the transmitters have perfect knowledge of the channel states of all users represented as
a vector h = [h1, · · · , hK ]�. We further assume that although the fading is slow enough
to ensure constant channel gain in a symbol interval, it is fast enough so that within the
transmission time of a block of symbols the long term ergodic properties of the fading
process can be observed [11].

3 Problem Definition

For a given set of signature sequences and a fixed set of channel gains, h, the sum capacity
Csum(h) is [6]

Csum(h) =
1

2
log

[
det

(
IN + σ−2

K∑
i=1

hip̄isis
�
i

)]
(3)

where p̄i is the average power of user i. When the channel state is modeled as a random
vector, the quantity Csum(h) is random as well. If a constant (channel-independent or
non-adaptive) power policy is applied, the ergodic sum capacity is found as the expected
value of Csum(h) over all channel states [11],

Csum =
1

2

∫
log

[
det

(
IN + σ−2

K∑
i=1

hip̄isis
�
i

)]
f(h)dh (4)

where f(h) denotes the probability density function of the channel state vector. In
(4), the transmit power of user i is fixed to p̄i, its average power constraint. Our aim
is to choose the transmit powers of the users as a function of the channel state pi(h),
i = 1, · · · , K, with the aim of maximizing the ergodic sum capacity of the system subject



to average transmit power constraints for all users. We formulate the problem as,

max
{pi(h)}

∫
log

[
det

(
IN + σ−2

K∑
i=1

hipi(h)sis
�
i

)]
f(h)dh

s.t.

∫
pi(h)f(h)dh = p̄i, pi(h) ≥ 0, i = 1, · · · , K (5)

For arbitrary signature sequences, no closed form solution for this problem is known. It
is interesting to note that, (5) reduces to the Knopp-Humblet problem [7] if si = s for
all i, and it reduces to K separable Goldsmith-Varaiya [5] problems, if the signatures
are orthogonal, i.e., s�i sj = 0 for i �= j, in which case each problem can be solved
independently of the others. Our aim is to find the optimal power allocation for the
most general case where the signature sequences are arbitrarily correlated, i.e., s�i sj is
not restricted to be zero or one.

4 Optimal Power Control via Iterative Waterfilling

We can express the ergodic sum capacity, the objective of (5), as

Csum = Ck + Ck (6)

where

Ck =
1

2

∫
log
(
1 + hkpk(h)s�k A−1

k sk

)
f(h)dh (7)

represents the contribution of the kth user to the sum capacity when the transmit powers
of all other users at all channel states are fixed, and

Ck =
1

2

∫
log

[
det

(
IN + σ−2

∑
i�=k

hipi(h)sis
�
i

)]
f(h)dh (8)

represents the sum capacity of the remaining users when the kth user is removed from
the system. In (7) and (8) Ak is defined as

Ak = σ2IN +
∑
i�=k

hipi(h)sis
�
i (9)

It is worth noting that Csum, the objective function in (5), is a concave function of the
powers, and moreover, provided that the matrices {sis

�
i }K

i=1 are linearly independent, it
is a strictly concave function of the powers [9]. Also, the constraint set in (5) is convex.
Therefore, the optimization problem in (5) has a unique global optimum when {sis

�
i }K

i=1

are linearly independent; and all local optimums yield the same objective function value,
otherwise. Lagrange optimization technique can be used to find the global optimum
solution. Let us associate the Lagrange multipliers λi’s with the equality constraints and
µi’s with the inequality constraints. The optimum power allocation policy satisfies the
extended Karush-Kuhn-Tucker (KKT) conditions with mixed constraints [12, Chap. 13],
which, after taking the derivatives and employing the complementary slackness conditions
piµi = 0, simplify to

hks
�
k A−1

k sk

1 + hkpk(h)s�k A−1
k sk

≤ λk, k = 1, · · · , K, ∀ h ∈ RK (10)



which is satisfied with equality if and only if pk > 0. Using the fact that pi ≥ 0 for all i,
(10) implies that the capacity maximizing power allocation policy satisfies

pk(h) =

(
1

λk

− 1

hks�k A−1
k sk

)+

, k = 1, · · · , K (11)

for any realization of the channel h. Here λi’s are determined by inserting (11) into the
average power constraints in (5). The value of λi depends on the statistical characteri-
zation of the channel and the choice of signature sequences.

For arbitrary signature sequences, the set of equations (11) is highly nonlinear. Al-
though it is possible to solve for the optimum powers and transmit regions in a simple
system with few users, it seems intractable for systems with large numbers of users. It is
worth noting that hks

�
k A−1

k sk is the SIR of user k at at the output of an MMSE receiver
if it transmitted with pk = 1. Therefore, all users should simultaneously waterfill on
the “base levels” of the inverse of the SIRs they would obtain if they transmitted with
unit powers. Since solving for the simultaneous waterfilling solution for all users seems
intractable, we devise an iterative algorithm. Consider optimizing for the power of only
user k over all channel states, given the powers of all other users at all channel states,

pn+1
k = arg max

pk

Csum
(
pn+1

1 , · · · , pn+1
k−1, pk, p

n
k+1 · · · , pt

K

)
= arg max

pk

Ck (pk,Ak) (12)

where Ak captures the interference effects of all other users on user k. Note that Ak

is a function of the transmit powers, signature sequences and channel states of all users
except user k. We have already noted that the objective function Csum is a concave
function of powers, and also that Ck given by (7) is a strictly concave function of pk. The
constraint set for powers over which the maximization is to be performed is convex, and
has a Cartesian product structure among the users. The solution of (12) can be found
as a single-user waterfilling over all channel states of the system,

pk(h) =

(
1

λ̃k

− 1

hks�k A−1
k sk

)+

(13)

If we let only one user allocate its power over all channel states using (13), and iterate
over all users sequentially, this iterative one-user-at-a-time algorithm is guaranteed to
converge to the global optimum solution of (5) [13, Prop. 3.9].

At any given iteration, a user waterfills over the inverse of the SIRs it would obtain if
it transmitted with unit power, given the current power allocations of all other users at
all channel states: the user puts more power into the channel states where its expected
SIR with unit transmit power is larger. For orthogonal signature sequences, the iteration
in (13) becomes

pk(h) =

(
1

λ̃k

− σ2

hk

)+

(14)

and converges to the optimum solution found in [5] in one step. For identical signature
sequences, the iteration in (13) becomes

pk(h) =

(
1

λ̃k

− σ2 +
∑

i�=k hipi(h)

hk

)+

(15)



and converges to the solution found in [7]. Finally, we note that, the iterative imple-
mentation of the “simultaneous waterfilling in time” presented in this paper is analogous
to the iterative implementation of the “simultaneous waterfilling over parallel channels”
in [14].

5 Properties of the Optimal Power Allocation

Let us now consider the inverse problem of finding the channel state of the system for
a given non-zero transmit power vector. Since all components of the power vector are
non-zero, this means that, all users transmit simultaneously at this particular channel
state, and (10) should be satisfied with equality for all k. Therefore, given any arbitrary
power vector p with 0 < pi < 1/λi, the channel state where this power vector is used can
be found by solving

h = f(h) (16)

where the vector function f(h) is defined as

fk(h) =
λkpk

(1 − λkpk)

1

pks�k A−1
k sk

, k = 1, · · · , K (17)

Note that, for 0 < pi < 1/λi, f(h) is a standard function as defined in [3]. This means
that, if there is a solution for (16), it is unique. In fact, one can devise an iterative
algorithm to find this solution,

h(n + 1) = f(h(n)) (18)

It is interesting to note that the problem in (16) with the definition of f(h) in (17) is very
similar to the joint power control and receiver design problem studied in [15]. In [15],
the problem is to solve for the powers (and receiver filters) when the SIR targets and
channel gains of the users are given. In (16), the problem is to solve for the channel gains
when the powers are given. The role played by the channel gains in [15] is the same as
the role played by the powers in (16). Also, here, the quantity that plays the role of the
SIR target in [15], denoted by βk for user k, is

βk =
λkpk

(1 − λkpk)
(19)

which depends on the power of user k.
Therefore, once the powers of the users are fixed, assuming that the SIR targets

produced by the powers through (19) are feasible, in the sense that (16) has a solution,
we can find that solution, and therefore, we can obtain a unique set of channel gains where
the given power vector is used by the system as the transmit power vector. Therefore,
corresponding to a set of feasible power values, there always exists a set of channel gains
where all the users in the system transmit with non-zero powers. This set however can
have zero probability as in [7]. To determine the set of feasible powers, it is sufficient to
determine the set of feasible SIR targets in [15]. The SIR targets β1, · · · , βk in a joint
power control and receiver design problem are feasible if and only if [16, Theorem 10]

∑
k∈U

βk

1 + βk
< rank(S(U)), ∀ U ⊂ {1, · · · , K} (20)



where S(U) is the matrix containing the signature sequences of the users in the subset
U . Inserting (19) into (20), for our problem, a power vector p is feasible, if and only if
it satisfies ∑

k∈U

λkpk < rank(S(U)), ∀ U ⊂ {1, · · · , K} (21)

The significance of (21) for our purposes is that the set of feasible power vectors is a
volume in K dimensional space. For the set of feasible power vectors satisfying (21),
and having strictly positive components, if the set of corresponding channel states found
by solving (16) have a non-zero measure, then we can conclude that all users transmit
simultaneously with a positive probability.

Theorem 1 There exists a non-zero probability region of fading states h where all K
users transmit simultaneously, if and only if {sis

�
i }K

i=1 are linearly independent.

Proof: It is clear that the set of feasible powers as given by (21) constitutes a volume
V in RK . Let us then pick any point in this set, and compute the channel state which
corresponds to this particular solution of powers. By the feasibility of p0, the resulting
channel state h0 is unique, and the original vector p0 satisfies the KKT conditions at
h0. Given {sis

�
i }K

i=1 are linearly independent, we know that there exists a unique global
maximum for Csum. Therefore, the waterfilling solution we get at the fading state h0

should be equal to p0, as it is a possible solution to the problem, and the problem has
a unique global optimum. Hence, we obtain a unique fading state for a power level, and
a unique power for a fading state, for a set of powers satisfying (21). This implies that
there exists a one-to-one mapping from the space of feasible non-zero powers to the space
of fading states. This one-to-one mapping maps the volume V ∈ RK of feasible powers to
a volume of fading states Ṽ ∈ RK implying that the resulting set of fading states where
K users transmit simultaneously has non-zero probability. This completes the proof of
the if part of the theorem.

For the only if part, consider the case where {sis
�
i }K

i=1 are linearly dependent. For
all K users to transmit simultaneously with non-zero powers, (10) must be satisfied with
equality for all k. By applying matrix inversion lemma, and defining A = σ2IN +SPS�,
which contains all users’ powers and signatures, (10) can be written alternatively as

hks
�
k A−1sk = λk, k = 1, · · · , K (22)

Each of these equations can also be rewritten as,

hktr
(
A−1sks

�
k

)
= λk, k = 1, · · · , K (23)

If {sis
�
i }K

i=1 are linearly dependent, then any one of the elements of this set, say sks
�
k , can

be written as a linear combination of the others, say, with coefficients αi, not all equal
to zero. Thus,

hktr

(
A−1

∑
i�=k

αisis
�
i

)
= hk

∑
i�=k

αis
�
i A−1si = λk (24)

and using (22) in (24), we get ∑
i�=k

αi
λi

hi
=
λk

hk
(25)

This means that, regardless of the power levels, for all users to transmit simultaneously,
the channel states should satisfy (25). Since the channel states are continuous random



variables, this event has zero probability. Therefore, given that {sis
�
i }K

i=1 are linearly
dependent, all K users transmit simultaneously only with zero probability. �

Corollary 1 When K ≤ N , for a set of K linearly independent signature sequences,
there always exists a non-zero probability region of channel states where all K users
transmit simultaneously.

Proof: The result follows from Theorem 1, and the fact that if {si}K
i=1 are linearly

independent then {sis
�
i }K

i=1 are linearly independent. �

Corollary 2 For a set of K signature sequences and processing gain N, the number of
users that can transmit simultaneously cannot be larger than N(N + 1)/2.

Proof: The dimensionality of the space of N × N symmetric matrices is N(N + 1)/2,
therefore if K > N(N +1)/2, {sis

�
i }K

i=1 are guaranteed to be linearly dependent, and the
result follows from Theorem 1. �

6 Numerical Examples

In this section, we give some simple numerical examples to support our analysis. Figure 1
gives an example for the two user case where the signature sequences are correlated with
s�1 s2 = 0.86, in which case two users may transmit at the same time, as labeled on the
figure. This case corresponds to the setting in Corollary 1. The fading is assumed to be
i.i.d., and uniform in (0, 1) for both users. Figure 2 gives the power of user 1 for each
fading level. In this figure, the transmit power of user 1 is represented by gray levels,
lighter colors corresponding to more power. Note that, user 1 performs a single user
waterfilling wherever user 2 does not transmit. In this region, the transmit power of user
1 for a fixed h1 is constant (independent of h2). However, once user 2 starts transmitting,
the “base level of the water tank” is increased, decreasing the power level of user 1 with
increasing h2. Figure 3 illustrates the convergence of the iterative waterfilling algorithm
to the sum capacity of the system; the convergence is very fast as suggested by the plot.

Another significance of Theorem 1 is that we can have multiple users transmit si-
multaneously with non-zero probability, even when the signature sequences are linearly
dependent, as long as we can maintain the independence of {sis

�
i }K

i=1. Figure 4 shows
the region where all users transmit simultaneously for K = 3 and N = 2.

7 Conclusion

We proposed an algorithm to compute the optimum transmit powers of the users that
maximize the sum capacity of a CDMA system with arbitrary signature sequences in a
fading channel. The algorithm is an iterative waterfilling of powers of all users over all
fading states treating at each step all other users’ signals as additional colored noise. We
showed that this iterative strategy converges to a globally optimum solution, and that
the global optimum is unique if the signature sequence set is such that {sis

�
i }K

i=1 are
linearly independent.

We also showed that, the optimum power allocation scheme in the vector multiple
access channel of interest dictates more than one user to transmit simultaneously at some
channel states, and the set of such channel states has a non-zero probability. In fact, all
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K users in the system are shown to transmit simultaneously with non-zero probability,
if and only if {sis

�
i }K

i=1 are linearly independent. An immediate implication of this is
that, if the signature sequences {si}K

i=1 are linearly independent, then all users transmit
simultaneously in a non-zero probability region of the channel states.
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