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Power Control for
Two User Cooperative OFDMA Channels

Sezi Bakım and Onur Kaya, Member, IEEE

Abstract—For a two user cooperative orthogonal frequency
division multiple access (OFDMA) system with full channel
state information (CSI), we obtain the optimal power allocation
(PA) policies which maximize the rate region achievable by
a channel adaptive implementation of inter-subchannel block
Markov superposition encoding (BMSE), used in conjunction
with backwards decoding. We provide the optimality conditions
that need to be satisfied by the powers associated with the
users’ codewords and derive the closed form expressions for
the optimal powers. We propose two algorithms that can be
used to optimize the powers to achieve any desired rate pair
on the rate region boundary: a projected subgradient algorithm,
and an iterative waterfilling-like algorithm based on Karush-
Kuhn-Tucker (KKT) conditions for optimality, which operates
one user at a time and converges much faster. We observe that,
utilization of power control to take advantage of the diversity
offered by the cooperative OFDMA system, not only leads to
a remarkable improvement in achievable rates, but also may
help determine how the subchannels have to be instantaneously
allocated to various tasks in cooperation. Simulations show that
the gain from power allocation is still significant even when the
CSI feedback is limited.

Index Terms—Achievable rates, block Markov coding,
OFDMA, power control, resource allocation, user cooperation.

I. INTRODUCTION

THE ability of OFDMA to cope with both intersymbol and
interuser interference, combined with its low complexity

of implementation, have made it a popular choice for the
next generation wireless networks. As a result, the prob-
lem of resource allocation in OFDMA systems was studied
extensively in the literature. One example is [2], where it
was proved that in an OFDMA uplink system, allocating
subcarriers to the users with the maximum marginal rate is
a necessary condition for maximizing the system throughput.
A similar problem was solved in [3] using KKT conditions,
by optimizing a utility function which was assumed to be
a function of the rates. In [4], a low-complexity algorithm
for subcarrier, power, and rate allocation for OFDMA was
proposed, to maximize the sum rate under individual rate
constraints to guarantee fairness. The downlink ergodic sum
rate maximization problem was considered in [5], where the
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authors developed a linear complexity subcarrier and power
allocation algorithm. These works, as well as many others
on OFDMA, naturally assume orthogonal multiple access,
thereby choosing to avoid interference. However, like all
orthogonal transmission techniques, OFDMA incurs some rate
penalty. Moreover, “interference” in wireless channels is in
fact free side information, and not ignoring it opens up the
possibility of user cooperation. Therefore, in this paper, we
focus on resource allocation for a two user OFDMA channel,
which allows for mutual cooperation among the users over
each subchannel, each taking into account the available side
information.

The overheard information in a typical wireless multiple
access channel (MAC), is captured by modeling the system
as a MAC with generalized feedback (MAC-GF) [6]. In [6],
achievable rates for the MAC-GF were obtained based on
BMSE and backwards decoding. In [7], these encoding and
decoding techniques were applied to a Gaussian MAC in
fading, and the resulting rate regions were characterized. In
[8], PA policies that maximize the rates achievable by BMSE
for the same model were obtained.

While the above papers all deal with a scalar MAC-GF,
some works on resource allocation for user cooperation in
vector channels, specifically OFDMA, also exist. A coopera-
tive OFDMA system where each user is allowed to transmit
and receive at the same time, but necessarily on different
subcarriers, was considered in [9]. Subcarrier and PA schemes
for a time division duplex amplify and forward protocol
were employed in [10] with the aim of maximizing system
throughput and enhancing fairness in a cooperative OFDMA
uplink system. Resource allocation and cooperative partner
selection in cooperative OFDM networks was investigated
with the objective of minimizing the overall power in [11].
In [12], power allocation for an OFDM based two-way relay
channel using physical network coding is considered. How-
ever, these works consider either a one sided cooperation
strategy, or a mutually cooperative strategy based on two
parallel dedicated relay channels, or mutual cooperation based
on a time division protocol. Here, we shall consider a more
general cooperative OFDMA model based on parallel MAC-
GFs, which allows mutual cooperation of two users over
shared resources, and does make not any prior assumptions
about how the subchannels are assigned to the users.

In this paper, we extend two full-duplex cooperative encod-
ing strategies which were recently introduced in [13], namely,
intra-subchannel cooperative encoding (IntraSCE) and inter-
subchannel cooperative encoding (InterSCE), to a channel
adaptive scenario. The main contributions are; (i) the char-
acterization of the long term achievable rate region for a two
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user cooperative OFDMA system with power control; (ii) the
analytical derivation of the optimal PA policy that results in the
best known achievable rate for the non-orthogonal mutually
cooperative scenario; (iii) the development of two algorithms
which obtain the optimal PA, and (iv) the evaluation of
the achievable rate region under several scenarios, including
limited CSI feedback. We first obtain the properties of the
PA policy that maximizes the sum rate of the cooperative
OFDMA system employing IntraSCE and InterSCE. Despite
the complex re-encoding structure employed in InterSCE, the
achievable rate region turns out to be of a relatively similar
form to its scalar counterpart, and we are able to extend
some properties of the optimal PA derived in [8] for a scalar
cooperative MAC, to cooperative OFDMA. As a result, the
weighted sum of rates, which can be used to obtain any point
on the rate region boundary, becomes concave, and convex
optimization techniques can be employed. We first propose a
projected subgradient algorithm that converges to the optimum
and maximizes the achievable rate region. Next, we derive
the optimality conditions, and closed form expressions for
optimum powers analytically. We are then able to propose
an alternative efficient iterative algorithm with a much lower
complexity, to obtain the rate points on the achievable rate
region boundary. This algorithm works by solving the KKT
optimality conditions iteratively over the users, to obtain
the optimal powers. As a result, we demonstrate that by
jointly exploiting the diversity provided by OFDMA’s parallel
subchannels, and the temporal diversity created by the time
varying channel, we obtain very promising gains in achievable
rates. More interestingly, we observe that the optimal PA
may automatically dictate that some subchannels are assigned
exclusively to certain users/tasks, depending on the instanta-
neous channel state, and that, even with limited CSI feedback
from the receiver, the improvement in the rate region is still
significant.

II. SYSTEM MODEL

We consider a two user full-duplex cooperative OFDMA
system with N subchannels, which is shown in Fig. 1, and is
modeled by,
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Fig. 1. Gaussian cooperative OFDMA channel.

III. LONG-TERM ACHIEVABLE RATES FOR COOPERATIVE

OFDMA

We first briefly review the channel non-adaptive IntraSCE
and InterSCE strategies proposed in [13], which shall be
extended to obtain our channel adaptive model and rate
regions. Both mutually cooperative strategies are of decode
and forward type, and rely on block Markov superposition
encoding at the transmitters, and backward decoding at the
receiver. The communication takes place in B blocks. The
message wk[b] of each user k ∈ {1, 2} in block b is divided
into two submessages, wk0[b] and wkj [b], intended to be
decoded at the receiver and cooperative partner j ∈ {1, 2}
respectively, which are further divided into N submessages
each,

wk0[b] =
{
w

(1)
k0 [b], ..., w

(N)
k0 [b]

}
,

wkj [b] =
{
w

(1)
kj [b], ..., w

(N)
kj [b]

}
, (4)

to be transmitted over disjoint subchannels. In both IntraSCE
and InterSCE, the codeword X

(i)
k transmitted by each user k

over each subchannel i in block b ∈ {1, . . . , B} is given by,

X
(i)
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√
p
(i)
k0X

(i)
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√
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(i)
kjX

(i)
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√
p
(i)
Uk
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Here, the component codewords X
(i)
k0 , X

(i)
kj and U

(i)
k are

all selected from codebooks which are randomly generated
from unit Gaussian distributions, and are scaled to have the
respective powers p

(i)
k0 , p(i)kj and p

(i)
Uk

. In a given block b, the

task of X
(i)
k0 is to transmit fresh information w

(i)
k0 [b] directly

intended for the receiver; while the codeword X
(i)
kj is used for

establishing common information, w(i)
kj [b], at the cooperating

partner. User j decodes w
(i)
kj [b] at the end of block b using

X
(i)
kj , and treating X

(i)
k0 as noise. The difference of IntraSCE

and InterSCE lies in the way U
(i)
k , which is the codeword used

for conveying the previously established common information
to the receiver, is mapped to the messages. In IntraSCE, U (i)

k

is used to re-transmit the cooperative submessages, w(i)
kj [b−1]

and w
(i)
jk [b − 1] received on subchannel i in block b − 1, to

the destination, over the same subchannel. However in the
InterSCE strategy, after common information is established
at the cooperating partner, the cooperative messages are re-
partitioned, and U

(i)
k may be used to transmit sub-messages

received over other subchannels. Note that, since both users
will know wkj [b−1] and wjk[b−1] at the end of block b−1,
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U
(i)
k is commonly known to both users, and does not act as

further interference while decoding w
(i)
kj [b]. The details of the

achievability scheme for the channel non-adaptive case can be
found in [13].

Note that, (5) does not utilize instantaneous CSI to adapt
the instantaneous transmission powers. However, if we assume
that the users and the receiver have full CSI of both the
cooperative links and the direct link, the users can further
adapt their transmitted symbols X(i)

k as a function of the joint
fading state s, to maximize the long term (ergodic) achievable
rates. In general, there are two ways to perform such channel
adaptation: we can either use a variable power, variable rate
codebook, as in [14], or we can use a single codebook, whose
rate is supported by the channel in the long term, and perform
the channel adaptation by simply multiplying entries from this
codebook by channel adaptive powers, as in [15]. In this paper,
we employ the latter approach, and propose a channel adaptive
version of the encoding strategies in [13], where we scale each
of the codewords in (5) by variable powers,
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where k, j ∈ {1, 2}, k �= j, i = 1, · · · , N . The powers are
subject to the average power constraints,
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The achievable rate regions for power controlled IntraSCE
and InterSCE are obtained by extending [13, Corollary 1] and
[13, Corollary 2] respectively, using the new channel adaptive
encoding defined in (6). The resulting achievable rate region
for IntraSCE with power control is given by the closure of the
convex hull of all rate pairs (R1, R2) satisfying (8)-(10) at the
top of this page; while for InterSCE with power control, the
achievable rate region is the closure of the convex hull of
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where Rs = R1+R2, the convex hulls are taken over all valid
PA policies, and the variable A(i), i = 1, · · · , N , is defined

as
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In the next section, we obtain the PA policies which achieve
the rate tuples on the rate region boundary. To do this,
we first derive a simplifying property of optimal PA for
both cooperative encoding strategies, and then we focus on
InterSCE that provides superior achievable rates.

IV. CHANNEL ADAPTIVE POWER ALLOCATION

If we set N = 1 in (8)-(10) or (11)-(13), the problem
reduces to a scalar cooperative MAC. In [8], it was shown
for this scalar case that, based on the instantaneous channel
state, the optimal PA dictates that each user either sends
cooperative information, or fresh information, but not both.
Although in OFDMA, there is a sum power constraint over
the subchannels, and one would expect the PA over each
subchannel to be dependent on the powers assigned to the
other subchannels, we show that many properties of the
optimal PA for the proposed cooperative OFDMA system
remain surprisingly parallel to those in the scalar case [8], and
the codewords that should be used over each subchannel are
determined solely by the instantaneous fading coefficients over
that particular subchannel, as stated in the following lemma:

Lemma 1: The PA policy that maximizes the sum rate of
a cooperative OFDMA system using IntraSCE and InterSCE
should satisfy;
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Proof: Assume that we know the total optimal power
p
(i)∗
k (s), allocated to each subchannel i at each channel state

s. Then, for IntraSCE, the sum rate (10) is maximized if
each term in the summation is maximized. Since the total
power allocated to each term is fixed, we have N independent
optimization problems, and by [8, Proposition 1] the result
follows. For InterSCE, the sum rate (13) is maximized if
each argument of the minimum operation is maximized.
The second argument of (13) is insensitive to the choice of
p
(i)∗
k0 (s) or p

(i)∗
kj (s), as long as their sum is fixed; whereas

the first argument is maximized if we separately maximize its
summands for each i. The result follows by noting that this is
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also equivalent to N independent optimization problems, each
yielding a scalar case, and [8, Proposition 1] holds, giving the
desired result.

An important observation is that, setting two of the powers
equal to zero as suggested by Lemma 1, is also optimal for
the entire rate region maximization, as the right hand sides
of all three constraints, for both policies, are maximized by
choosing the powers according to Lemma 1.1 Therefore, from
now on we focus only on policies that satisfy Lemma 1.

Note that, the bounds (11), (12) and (13) on R1, R2

and R1 + R2 respectively for InterSCE are looser than the
corresponding bounds (8), (9) and (10) for IntraSCE, as
the minimum operations in (8), (9) are removed, and the
minimum in (10) is taken outside the summation, to obtain
(11), (12) and (13). As a result, the achievable rate region
of InterSCE contains that of IntraSCE. Hence, it is sufficient
to limit our focus on the InterSCE strategy, which results
in a uniformly better rate region. Then, it is easy to check
that the rate constraints in (11)-(13) now become concave in
the power vector p(s) = [p
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10 (s), p
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12 (s), p
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U1

(s), p
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p
(i)∗
21 (s), p

(i)∗
U2

(s), i = 1, . . . , N ], lending themselves to well
known techniques in convex optimization, which we discuss
in the next sections.

A. Achievable Rate Maximization Using Projected Subgradi-
ents

Since all bounds of the achievable rate region are concave in
powers, so is any weighted sum μ1R1 + μ2R2 at the corners.
Moreover, it is easy to show that the rate region is strictly
convex [8], [15]. Therefore, we can obtain points on the rate
region boundary by maximizing Rµ = μ1R1 + μ2R2, where
{R1, R2} is the corner of the pentagon obtained for a given
PA policy, defined by (11)-(13). Assuming μ1 > μ2 without
loss of generality, and employing Lemma 1 to simplify (11)-
(13), the optimization problem can be stated as in (15) on top
of this page, where ESd

denotes the expectation over s ∈ Sd,
d ∈ {1, 2, 3, 4}, and ESd1d2

denotes the expectation over s ∈
Sd1 ∪ Sd2 , d1, d2 ∈ {1, 2, 3, 4}.

Due to the minimum operation in (15), the gradient of the
objective function does not exist everywhere. In particular,
there are two gradient vectors, depending on which argument
of the minimum in (15) is active. Yet, these vectors may
be viewed instead as subgradients, which makes it possible
to employ the method of projected subgradients, for power
optimization. Due to the convex nature of our constraints, this
method is guaranteed to converge to the global optimum [16],

1We choose the first option for s ∈ S4, which may cause a slight deviation
from optimality for the sum rate. However, this case rarely occurs in practice,
and this suboptimality can be ignored, as it has been done in [8].

with a diminishing stepsize normalized by the norm of the
subgradient.

Since the calculation of the subgradients requires rather
tedious formulas which give little insight, we will directly
provide some examples of the achievable rate region, and
the resulting PA policy, based on simulations in Section V
instead. The major drawbacks of the subgradient algorithm
are its slow rate of convergence, and complexity. As the
number of subchannels increase, so does the size of the vector
of power variables, making the process of computing the
subgradients, and the projection operations formidable. Hence,
we next obtain analytical expressions for the weighted-sum-
rate-optimal power control, and propose an alternative iterative
algorithm which converges much faster than the subgradient
algorithm.

B. Iterative Achievable Rate Maximization Based on KKT
Conditions

The optimization problem (15), can be stated in an equiv-
alent differentiable form
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Note that, due to the concavity of the logarithm, (16)-(20) is a
convex optimization problem, with differentiable constraints,
and hence the KKT conditions are necessary and sufficient for
optimality. Assigning the Lagrange multipliers γ1, γ2, λ1, λ2
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p
(i)
Uk

(s) =

⎛
⎜⎝s

(i)
k0

μ2(1−γ1)
λk

(
s
(i)
k0 + λk

λj
s
(i)
j0

)
−
(
1 + s

(i)
10 p

(i)
1m + s

(i)
20 p

(i)
2n

)
(
s
(i)
k0 + λk

λj
s
(i)
j0

)2
⎞
⎟⎠

+

, (28)

p
(i)
1m(s) =
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(
(μ1−μ2+γ1μ2)

(
λ2s

(i)
10 +λ1s

(i)
20

)

λ2
1s

(i)
20

− 1

s
(i)
1m

)+

, if s ∈ Sc
4 and p

(i)
Uk

(s) > 0 (29a)

f

(
s
(i)
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2
,
(λ1s

(i)
20 +λ2s

(i)
10 )(μ1−μ2+γ1μ2)s

(i)
10

2−λ1
2s

(i)
20 (2s

(i)
10 +s

(i)
10 s

(i)
20 p

(i)
2n(s))

−λ1
2s

(i)
20

, (1 + s
(i)
20 p

(i)
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+
(λ1s

(i)
20 +λ2s

(i)
10 )

[
(μ1−μ2+γ1μ2)+(μ1−μ2)s

(i)
20 p

(i)
2n(s)

]
s
(i)
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−λ1
2s

(i)
20

)
, if s ∈ S4 and p

(i)
Uk

(s) > 0 (29b)

f
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λ1s

(i)
10 s
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(i)
10 s

(i)
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(i)
10 + s

(i)
1m + s

(i)
1ms

(i)
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(i)
2n(s)), λ1(1 + s

(i)
20 p

(i)
2n(s))
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(i)
1m(1 + s

(i)
20 p

(i)
2n(s))− μ2(1− γ1)s

(i)
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)
, if s ∈ Sc
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(i)
Uk
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λ1s

(i)
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2
,−μ1s
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2
+ λ1s

(i)
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(i)
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(i)
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(i)
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(i)
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(i)
20 p

(i)
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)
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(i)
Uk

(s) = 0 (29d)

p
(i)
2n(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γ1μ2

(
λ2s

(i)
10 +λ1s

(i)
20

)

λ2
2s

(i)
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s
(i)
2n
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, if s ∈ Sc
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(i)
Uk

(s) > 0 (30a)

(
γ1μ2

(
λ2s

(i)
10 +λ1s

(i)
20

)

λ2
2s

(i)
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s
(i)
20

− s
(i)
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s
(i)
20

p
(i)
1m(s)
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(i)
Uk

(s) > 0 (30b)

f
(
λ2s

(i)
20 s

(i)
2n,−μ2s

(i)
20 s

(i)
2n + λ2(s

(i)
20 + s

(i)
2n + s

(i)
10 s

(i)
2np

(i)
1m(s)), λ2(1 + s

(i)
10 p

(i)
1m(s))

−γ1μ2s
(i)
2n(1 + s

(i)
10 p

(i)
1m(s))− μ2(1− γ1)s

(i)
20

)
, if s ∈ Sc

4 and p
(i)
Uk

(s) = 0 (30c)(
μ2

λ2
− 1

s
(i)
20

− s
(i)
10

s
(i)
20

p
(i)
1m(s)

)+

, if s ∈ S4 and p
(i)
Uk

(s) = 0 (30d)

to the constraints (16)-(19), and ε
(i)
t (s), t = 1, ..., 6, to

the positivity constraints (20), we obtain the conditions for
optimality, given in the following lemma.

Lemma 2: Define the indices m, n as follows:

m =

{
0, if s ∈ S3 ∪ S4

2, if s ∈ S1 ∪ S2
, n =

{
0, if s ∈ S2 ∪ S4

1, if s ∈ S1 ∪ S3
. (21)

A power allocation policy p
(i)
1m(s), p(i)2n(s), p

(i)
U1
(s), p(i)U2

(s) is
optimal for the problem (16)-(20), if and only if it satisfies,
for s ∈ S1 ∪ S2 ∪ S3 � Sc

4 ,

(μ1 − μ2 + γ1μ2) s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

+ γ2μ2
s
(i)
10

1 +A(i)
≤ λ1, (22)

γ1μ2
s
(i)
2n

1 + s
(i)
2np

(i)
2n(s)

+ γ2μ2
s
(i)
20

1 +A(i)
≤ λ2, (23)

γ2μ2

√
s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√
p
(i)
Uk

(s)

(1 +A(i))
√

p
(i)
Uk

(s)
≤ λk, (24)

and for s ∈ S4,

(μ1 − μ2) s
(i)
10

1 + s
(i)
10 p

(i)
1m(s)

+
γ1μ2s

(i)
10

1 + s
(i)
10 p

(i)
1m(s) + s

(i)
20 p

(i)
2n(s)

+γ2μ2
s
(i)
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1 +A(i)
≤ λ1, (25)

γ1μ2s
(i)
20

1 + s
(i)
20 p

(i)
2n(s) + s

(i)
10 p

(i)
1m(s)

+
γ2μ2s

(i)
20

1 +A(i)
≤ λ2, (26)

γ2μ2

√
s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√
p
(i)
Uk

(s)

(1 +A(i))
√

p
(i)
Uk

(s)
≤ λk, (27)

where k = {1, 2}, and the Lagrange multipliers γ1, γ2 =
1−γ1, λ1 and λ2 are selected so that the constraints (16)-(19)
are satisfied with equality. Each of the constraints (22), (23)
and (24) (correspondingly (25), (26) and (27) when s ∈ S4)
are satisfied with equality if and only if the respective power
levels, p(i)1m(s), p(i)2n(s) or p(i)Uk

(s) are positive.

Proof: See Appendix.

The optimality conditions given in Lemma 2 for each
power component are heavily coupled, thereby making the
computation of the optimal PA policy seemingly difficult. Yet,
in the following theorem, we show that, after some non-trivial
observations, the coupling among the constraints is partially
removed, and as a result, we are able to provide closed form
expressions for the optimal power levels.

Theorem 1: For a cooperative OFDMA system employing
InterSCE, the optimal PA, p(i)1m(s), p(i)2n(s), p

(i)
U1
(s), p(i)U2

(s), that
solves (16)-(20) is given by (28)-(30d) on top of this page,
where γ1, λ1 and λ2 are selected to satisfy the constraints
(16)-(19) with equality, and the function f(·, ·, ·) is defined as
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f(a, b, c) �
(

−b+
√
b2−4ac
2a

)+
.

Proof: We start by noting that, to obtain coherent com-
bining gain, the optimal cooperative powers p(i)Uk

(s), k = 1, 2,
over a given subchannel and given channel state s, should
either be both positive, or both zero. Let us first assume that
both p

(i)
U1
(s) and p

(i)
U2
(s) are positive. Then, the constraints

(24), (equivalently (27)), should be satisfied with equality, for
k = 1, 2. Evaluating (24), (equivalently (27)), separately for
k = 1, 2, and dividing the resulting equalities, we get√

s
(i)
20 p

(i)
U2
(s) +

√
s
(i)
10 p

(i)
U1
(s)√

s
(i)
10 p

(i)
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√
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√
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10√
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√
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(i)
U2
(s)√

p
(i)
U1
(s)

=
λ1

λ2
, (31)

which yields

p
(i)
U1
(s) =

λ2
2s

(i)
10

λ2
1s

(i)
20

p
(i)
U2
(s). (32)

Plugging (32) into (24) (equivalently (27)), we achieve the
following crucial equality

γ2μ2

1 +A(i)
=

λ1λ2

λ1s
(i)
20 + λ2s

(i)
10

· (33)

The significance of (33) is that, its left hand size, which
involves all power components through A(i), and appears in
all of (22)-(27), can be replaced by a term which depends
only on the fixed Lagrange multipliers, λ1 and λ2, and the
direct link gains, s(i)k0 . Therefore, the optimality conditions for
p
(i)
1m(s) and p

(i)
2n(s) can be rewritten independently of p(i)Uk

(s).
For example, using (33) in (22), we get

(μ1 − μ2 + γ1μ2)
s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

≤ λ1
2s

(i)
20

λ1s
(i)
20 + λ2s

(i)
10

, (34)

which yields the waterfilling solution, (29a). Similarly, using
(33) in (23), (25) and (26), we obtain (30a), (29b) and (30b)
respectively. The expression, (28), of optimal p(i)U1

(s) follows
from (24), (32) and (33).

Note however that, p
(i)
Uk

(s) obtained by (28) is not guar-
anteed to be positive. In case it is not, this means that
(24) (equivalently (27)) is satisfied with strict inequality, the
optimal solution for p(i)Uk

(s) should be set to 0 and (33) can no

longer be used. Then, when p
(i)
Uk

(s) = 0, instead of (22)-(23)
and (25)-(26) we have to apply the conditions:

(μ1−μ2+γ1μ2) s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

+
γ2μ2s

(i)
10

1+s
(i)
10p

(i)
1m(s)+s

(i)
20p

(i)
2n(s)

≤ λ1,

(35)

γ1μ2s
(i)
2n

1 + s
(i)
2np

(i)
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+
γ2μ2s

(i)
20

1+s
(i)
10p

(i)
1m(s)+s

(i)
20p

(i)
2n(s)

≤ λ2,

(36)

for s ∈ S1 ∪ S2 ∪ S3, and

(μ1 − μ2) s
(i)
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1 + s
(i)
10 p

(i)
1m(s)

+
μ2s

(i)
10

1 + s
(i)
10 p

(i)
1m(s) + s

(i)
20 p

(i)
2n(s)

≤ λ1, (37)

μ2
s
(i)
20

1 + s
(i)
20 p

(i)
2n(s) + s

(i)
10 p

(i)
1m(s)

≤ λ2, (38)

for s ∈ S4.
When p

(i)
Uk

(s) = 0, k = 1, 2; the powers p(i)1m(s) and p
(i)
2n(s)

are automatically independent of p
(i)
Uk

(s). However, (35) and
(36); (37) and (38) are coupled, and each should be solved
by finding the positive roots of a quadratic equation. Since all
power values are non-negative, i.e., p(i)1m(s) ≥ 0 and p

(i)
2n(s) ≥

0, we can achieve p
(i)
1m(s) in (29c), p(i)2n(s) in (30c) by solving

(35) and (36). Similarly, p(i)1m(s) in (29d) and p
(i)
2n(s) in (30d)

can be obtained using (37) and (38). γ1, λ1 and λ2 are selected
in such a way that, when the power levels in (28)-(30d) are
used, the constraints (16)-(19) are satisfied.

The power levels of the cooperative codewords on each
subchannel, p(i)1m(s) and p

(i)
2n(s) in (29a) and (30a), have an

interesting single user waterfilling type interpretation, as they
solely depend on the channel gains of only that particular
subchannel, and the fixed Lagrange multipliers. The water
level is determined by the direct link gains. However, in
(29b)-(29d) and (30b)-(30d) the power p

(i)
1m(s) depends on

p
(i)
2n(s), and vice-versa: increasing one of the powers will

decrease the other, should the constraints (35)-(38) be satisfied
with equality, and we now have a multi-user waterfilling type
solution. This is somewhat different than the observations in
[8], which conjectured that a single user waterfilling type
solution for cooperative powers would be sufficient in all
scenarios, for the much simpler case of the scalar MAC, and
sum rate maximization only.

At this point, it should be clear that although (29a)-(30d)
do not explicitly depend on p

(i)
Uk

(s), the decision regarding
which of these equations should be used while computing
p
(i)
kj (s) does. Likewise, p(i)Uk

(s) are clearly functions of p(i)kj (s),
which makes equations (28)-(30d) coupled. Note however
that, the way we proved Theorem 1 automatically suggests
a natural way of solving the KKT conditions iteratively. To
this end, we propose an algorithm which performs updates
on the powers of the users, one-user-at-a-time: given p

(i)
U1
(s)

and p
(i)
12 (s), it computes p

(i)
U2
(s) and p

(i)
21 (s), and using these

new values for user 2, it re-iterates the powers of user 1. This
algorithm simplifies the seemingly difficult task of obtaining
the optimal powers from the coupled equations, and due to the
convex nature of the problem, and the Cartesian nature of the
constraints across users, it provably converges to the optimal
solution, as at the end of the iterations, the KKT conditions
will be satisfied. The outline of the algorithm is given on the
next page.

Perhaps the most important feature of this algorithm is that,
regardless of the number of subchannels used, we only need to
solve for three Lagrange multipliers, which relate the powers
allocated to the subchannels, to obtain the optimum PA. This
reduces the complexity of the algorithm dramatically, and
makes it scalable, compared to the subgradient algorithm. As
a result, the convergence is much faster.

V. SIMULATION RESULTS

In order to obtain the optimal PA policy, and the resulting
achievable rate region, we implement the projected subgra-
dient algorithm, and the iterative waterfilling-like algorithm
based on Karush-Kuhn-Tucker (KKT) conditions on opti-
mality, for a simple case with only three subchannels. The
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Algorithm 1 Iterative Power Allocation Algorithm

Initialize μ1, μ2, p(s),
while (16)-(17) are not satisfied do

while (18) is not satisfied do
Calculate p

(i)
1m(s) using (29a)-(29b) and p

(i)
U1
(s) using

(28) assuming p
(i)
U1
(s) > 0, ∀i

while ∃ s′ s.t. p(i)U1
(s′) < 0 do

Set p
(i)
U1
(s′) = 0 and re-calculate p

(i)
1m(s′) using

(29c)-(29d) and p
(i)
U1
(s′) using (28)

end while
Update λ1

end while
while (19) is not satisfied do

Calculate p
(i)
2n(s) using (30a)-(30b) and p

(i)
U2
(s) using

(28) assuming p
(i)
U2
(s) > 0, ∀i

while ∃ s′ s.t. p(i)U2
(s′) < 0 do

Set p
(i)
U2
(s′) = 0 and re-calculate p

(i)
2n(s

′) using

(30c)-(30d) and p
(i)
U2
(s′) using (28)

end while
Update λ2

end while
Update γ1

end while

achievable rate region for the InterSCE strategy is obtained
by running this algorithm for varying priorities μk, and then
by taking a convex hull over the resulting power optimized re-
gions. In Figure 2, we compare the achievable rate regions for
power controlled cooperative OFDMA utilizing the projected
subgradient algorithm and the iterative algorithm, with those
for several encoding strategies without power control, from
[13]. We assume that, for the channel non-adaptive protocols,
the users are still able to allocate their total power across
subchannels and codewords. The total power of each user and
the noise variances are set to unity. The fading coefficients are
chosen from independent Rayleigh distributions, the means
of which are shown in Figure 2. We observe that, when the
powers are chosen jointly optimally with InterSCE, there is a
major improvement in achievable rates. This unusually high
gain from power control can be attributed to our ability to take
advantage of the additional diversity created by OFDMA: PA
not only allows us to use the subchannels at time varying
instantaneous rates based on the channel qualities, but also
to use them adaptively for varying purposes, i.e., cooperation,
common message generation or direct transmission.

In practice, the feedback channel from the receiver to
the transmitters can send only a few bits of feedback, as
otherwise a significant portion of channel resources have to
be allocated to the reverse link which does not contribute
to the channel rate. Hence, in Figure 2, we also show the
rate region achievable with limited feedback. We assume that,
since the feedback is very low rate, it is error free. When the
receiver has access to channel gains of the users, there are two
approaches one can take to feed back information to the users:
a straightforward method is to quantize the channel states, and
feed back the quantized fading values on each subchannel.
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Fig. 2. Achievable rate regions in Rayleigh fading.

Assuming a Q bit quantizer is used for each fading state, the
receiver should feed back a total of 4NQ bits of CSI to each
user, and then the users will have to look up the power levels
optimized for the quantized channel states, and use them in
their transmission. An alternative method is to compute the
optimal power levels first at the receiver, and then quantize
them to obtain a quantized power codebook. Whenever a
channel state is observed, the receiver can then directly feed
back the quantized powers to be used to the users. Due to
the structure of the optimal PA policy observed in Lemma 1,
only two powers out of three are active for each user k at any
given channel state, and which one will be active only depends
on a single comparison, s(i)kj ≶ s

(i)
k0 , which requires only one

bit feedback. Hence, the total feedback required per user is
(2Q+1)N bits per user, assuming Q bit feedback is used for
each power value. We use Lloyd-Max algorithm to quantize
the powers, taking into account their probability distribution
induced by the underlying channel state distribution. The case
with Q = 1 is plotted on Figure 2. A quite interesting observa-
tion is that even with one bit feedback per power component,
which is equivalent to selecting one of two possible values for
each codeword’s power, a large improvement in rates can be
achieved compared to the non power-controlled scenario. With
two bits of feedback per component, the achievable rate region
is nearly the same as that for perfect CSI, and is omitted to
avoid confusion with the subgradient rate region.

In Figure 2, it is also observed that the gain achieved by
power control through the iterative algorithm always exceeds
the projected subgradient algorithm, especially in the sum rate
region. The main reason is that, the subgradient algorithm
had still not fully converged, when it was stopped at 10000
iterations, while the iterative algorithm did fully converge to
the optimal PA. The relative convergence times of the two
algorithms are shown in Figure 3, which clearly depicts the
advantage of using the iterative algorithm over the subgradient
algorithm.

In Figure 4, we compare the rate regions in a uniform fading
environment with means expressed on the figure. Here we en-
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Fig. 3. Comparison of the convergence times of the proposed algorithms in
Rayleigh fading.
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Fig. 4. Achievable rate regions in uniform fading.

sure s ∈ S1, with the motivation of obtaining a strictly optimal
PA, and a simpler description of the power distributions. In this
setting, since some of the power values are always zero, the
number of power variables is less, and hence the subgradient
algorithm nearly converges to the optimum within 10000
iterations, and the rate regions of subgradient and iterative
algorithms nearly coincide. For this setting, we further analyze
the optimal power distributions over the channel states, in
Figures 5(a)-5(c), 6(a)-6(c) and 7(a)-7(b).

Figures 5(a)-5(c) and 6(a)-6(c) demonstrate the optimal
powers allocated to subchannel 1, as functions of the inter-
user link gains, when the direct link gains are fixed to two
different sets specified on the figures. Powers p

(1)
U2

are not

shown, to save space, as they are identical to p
(1)
U1

due to the
symmetry in fading. In Figures 5(a)-5(c), the direct link gains
are at their maximum, hence the cooperative powers, p(1)Uk

, are
always positive. In this case, we observe the expected single
user waterfilling type behavior for the distributions of p(1)12 (s)

and p
(1)
21 (s). In Figures 6(a)-6(c) however, when the direct

links are moderate on the average, we have a more interesting
scenario: when s

(1)
21 is significantly stronger instantaneously,

only user 2 uses the subchannel. When both inter-user links
are instantaneously strong, the users exchange information
using simultaneous waterfilling, and set p

(1)
Uk

to zero. When

both inter-user links are weak, the users use the subchannel
solely to convey common information to the RX, by using
only p

(1)
U1

and p
(1)
U2

. An important observation is that, although
we make no prior assumptions on subchannel allocation to
users/codewords, the optimal powers sometimes dictate exclu-
sive use of some subchannels for dedicated tasks. The resulting
power distributions show that the KKT conditions are indeed
satisfied at the fixed point of our iterative algorithm, verifying
convergence.

In Figures 7(a)-7(b), we plot the power distributions ob-
tained using the subgradient algorithm instead, for the same
setting as in Figures 6(a)-6(c). The subgradient algorithm is
terminated after 10000 iterations. It is observed that while the
powers p

(1)
12 (s) and p

(1)
21 (s) seem to have nearly converged to

the optimal values shown in Figures 6(a)-6(c) (only p
(1)
21 (s)

is shown, as p
(1)
12 (s) is simply symmetrical), the cooperative

power p(1)U1
(s) has still not fully converged, though it is close

to its optimal distribution. Note that, the effect of this is
negligible on the rate regions, as was shown in Figure 4.

VI. CONCLUSION

We obtained the optimum PA policies for a mutually coop-
erative OFDMA channel employing IntraSCE and InterSCE
strategies. We developed a subgradient algorithm and a more
efficient iterative algorithm, both of which maximize the
achievable rate region. While the subgradient algorithm suffers
from a slow rate of convergence, the iterative algorithm,
whose number of iterations does not depend on the number of
subchannels, converges much faster. We demonstrated that the
optimal PA may also serve as a guideline for subchannel as-
signment to the users’ cooperative codewords, and that PA for
cooperative OFDMA provides significant rate improvements,
even in limited feedback scenarios, due to its ability to exploit
the diversity provided by OFDMA. The results presented in
this paper are limited to a two user scenario, and requires
a pre-grouping of users; an interesting future direction is
development of joint cooperation and power control strategies
in multiuser OFDMA systems.

VII. APPENDIX

Note that KKT conditions are necessary and sufficient for
optimality. To obtain the KKT conditions, we first assign
the Lagrange multipliers γ1, γ2, λ1 and λ2 to the inequality
constraints (16), (17), (18), (19) respectively, and we further
assign εit(s), t = 1, . . . , 6, ∀s to the positivity constraints (20).
Rewriting (16), (17), (18), (19) using the definitions of the
indices m and n given in (21), we obtain the Lagrangian,

L = Rμ + γ1

[
(μ1 − μ2)

N∑
i=1

E
[
C(p

(i)
1m(s)s

(i)
1m)
]

+ μ2

N∑
i=1

(
ES12

[
C(p

(i)
1m(s)s

(i)
1m)
]
+ ES3

[
C(p

(i)
1m(s)s

(i)
1m)
]

+ ES13

[
C(p

(i)
2n(s)s

(i)
2n)
]
+ ES2

[
C(p

(i)
2n(s)s

(i)
2n)
]

+ ES4

[
C(p

(i)
1m(s)s

(i)
1m + p

(i)
2n(s)s

(i)
2n)
])

−Rμ

]
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Fig. 5. Optimal power allocation when s
(1)
10 and s

(1)
20 are maximum (i.e. s(1)10 = s

(1)
20 = 0.25), fixed and always less than s

(1)
12 and s

(1)
21 . p(1)Uk

are always

positive, to take advantage of strong direct links. p(1)kj obey single user waterfilling, as expected.
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Fig. 6. Optimal power allocation when s
(1)
10 = s

(1)
20 = 0.15, fixed and always less than s

(1)
12 and s

(1)
21 . When p

(1)
Uk

is positive, p(1)kj obey single user waterfilling.

As the inter-user links get stronger, it becomes more profitable to create common information, p(1)Uk
become 0, and the users perform simultaneous waterfilling.
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Fig. 7. Power allocation obtained after 10000 iterations of the subgradient algorithm, when s
(1)
10 = s

(1)
20 = 0.15, fixed and always less than s

(1)
12 and s

(1)
21 .

The algorithm has not yet converged to the optimum value, despite a much longer running time compared to the iterative algorithm. Achievable rates are
nearly within 0.1% of the optimum value.

+ γ2

[
(μ1 − μ2)

(
N∑
i=1

E
[
C(p

(i)
1m(s)s

(i)
1m)
])

+μ2

N∑
i=1

E
[
C
(
A(i)

)]
−Rμ

]

+ λ1

(
p̄1 −

N∑
i=1

(
E
[
p
(i)
1m(s)

]
+ E

[
p
(i)
U1
(s)
]))

+ λ2

(
p̄2 −

N∑
i=1

(
E
[
p
(i)
2n(s)

]
+ E

[
p
(i)
U2
(s)
]))

+ ε
(i)
1 (s)p

(i)
10 (s) + ε

(i)
2 (s)p

(i)
12 (s) + ε

(i)
3 (s)p

(i)
U1
(s)

+ ε
(i)
4 (s)p

(i)
20 (s) + ε

(i)
5 (s)p

(i)
21 (s) + ε

(i)
6 (s)p

(i)
U2
(s). (39)

For s ∈ S1 ∪ S2 ∪ S3, we take partial derivatives of the
Lagrangian function, L with respect to p

(i)
1m(s), p(i)2n(s), and

p
(i)
Uk

(s), ∀i and ∀s, to obtain the respective conditions

γ2μ2s
(i)
10

1 +A(i)
+

(μ1 − μ2 + γ1μ2) s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

− λ1 + ε(i)e1 (s) = 0, (40)

γ2μ2s
(i)
20

1 +A(i)
+

γ1μ2s
(i)
2n

1 + s
(i)
2np

(i)
2n(s)

− λ2 + ε(i)e2 (s) = 0, (41)

γ2μ2

√
s
(i)
k0s

(i)
j0 p

(i)
Uj
(s)+s

(i)
k0

√
p
(i)
Uk

(s)

(1 +A(i))
√

p
(i)
Uk

(s)
−λk+ε(i)e3 (s) = 0, (42)

where e1 ∈ {1, 2}, e2 ∈ {4, 5} and e3 ∈ {3, 6} take their
values based on with respect to which power the derivative
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is taken. Likewise, for s ∈ S4, and the respective partial
derivatives yield

γ2μ2s
(i)
10

1 +A(i)
+

(μ1 − μ2)s
(i)
10

1 + s
(i)
10 p

(i)
1m(s)

+
γ1μ2s

(i)
10

1+s
(i)
10p

(i)
1m(s)+s

(i)
20p

(i)
2n(s)

−λ1+ε(i)e1 (s) = 0, (43)

γ2μ2s
(i)
20

1 +A(i)
+

γ1μ2s
(i)
20

1+s
(i)
10p

(i)
1m(s)+s

(i)
2np

(i)
20 (s)

−λ2+ε(i)e2 (s) = 0, (44)

γ2μ2

√
s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√
p
(i)
Uk

(s)

(1 +A(i))
√
p
(i)
Uk

(s)
−λk+ε(i)e3 (s) = 0. (45)

Since the optimal PA policy should satisfy the complemen-
tary slackness constraints,

p
(i)
10 (s)ε

(i)
1 (s) = 0, p

(i)
12 (s)ε

(i)
2 (s) = 0, p

(i)
U1
(s)ε

(i)
3 (s) = 0,

p
(i)
20 (s)ε

(i)
4 (s) = 0, p

(i)
21 (s)ε

(i)
5 (s) = 0, p

(i)
U2
(s)ε

(i)
6 (s) = 0,

(46)

we can either drop ε
(i)
t (s) in each of (40)-(45), if the cor-

responding power is positive; or we can replace the equality
by a strict inequality, meaning that ε(i)t (s) is non-zero but its
corresponding power is zero. Hence, using the relevant con-
ditions from (46) in (40)-(45), and dropping the dependencies
on ε

(i)
t (s), we write the conditions for optimality in terms

of inequalities instead, which yield (22)-(27). The inequalities
hold with equality if and only if the corresponding power level
is positive, and with strict inequality of that power level is
zero.

Partial derivatives with respect to the dual variables dictate
that the conditions (16)-(19) are satisfied. Finally, partial
derivatives with respect to Rμ yields γ1 + γ2 = 1, hence
the condition γ1 = 1− γ2.

REFERENCES

[1] S. Bakım and O. Kaya, “Optimum power control for transmitter
cooperation in OFDMA based wireless networks,” in Proc. 2011 IEEE
Globecom Multicell Cooperation Workshop.

[2] K. Kim, Y. Han, and S.-L. Kim, “Joint subcarrier and power allocation
in uplink OFDMA systems,” IEEE Commun. Lett., vol. 9, no. 6, pp.
526–528, June 2005.

[3] C. Ng and C. Sung, “Low complexity subcarrier and power allocation
for utility maximization in uplink OFDMA systems,” IEEE Trans.
Wireless Commun., vol. 7, no. 5, pp. 1667–1675, May 2008.

[4] L. Gao and S. Cui, “Efficient subcarrier, power and rate allocation
with fairness consideration for OFDMA uplink,” IEEE Trans. Wireless
Commun., vol. 7, no. 5, pp. 1507-1511, May 2008.

[5] I. C. Wong and B. L. Evans, “Optimal downlink OFDMA resource
allocation with linear complexity to maximize ergodic rates,” IEEE
Trans. Wireless Commun., vol. 7, no. 3, pp. 962–971, Mar. 2008.

[6] F. M. J. Willems, E. C. van der Meulen, and J. P. M. Schalkwijk, “An
achievable rate region for the multiple access channel with generalized
feedback,” in Proc. 1983 Allerton Conference.

[7] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation
diversity—part I: system description,” IEEE Trans. Commun., vol. 51,
no. 11, pp. 1927–1938, Nov. 2003.

[8] O. Kaya and S. Ulukus, “Power control for fading cooperative multiple
access channels,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp.
2915–2923, Aug. 2007.

[9] L. Weng and R. D. Murch, “Cooperation strategies and resource
allocations in multiuser OFDMA systems,” IEEE Trans. Veh. Technol.,
vol. 58, no. 5, pp. 2331–2342, June 2009.

[10] W. Shim, Y. Han, and S. Kim, “Fairness-aware resource allocation in a
cooperative OFDMA uplink system,” IEEE Trans. Veh. Technol., vol.
59, no. 2, pp. 932–939, Feb. 2010.

[11] Z. Han, T. Himsoon, W. P. Siriwongpairat, and K. J. R. Liu, “Resource
allocation for multiuser cooperative OFDM networks: who helps
whom and how to cooperate, “IEEE Trans. Veh. Technol., vol. 58,
no. 6, pp. 2378–2391, June 2009.

[12] D. Yang, Z. Wang, H. He, and J Xu, “Optimal power control for two-
way relay with physical network coding,” Tsinghua Science and Tech.,
vol. 16, no. 6, pp. 569–575, Dec. 2011.

[13] S. Bakım and O. Kaya, “Cooperative strategies and achievable rates
for two user OFDMA channels,” IEEE Trans. Wireless Commun., vol.
10, no. 12, pp. 4029–4034, Dec. 2011.

[14] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp.
1986–1992, Nov. 1997.

[15] D. N. C Tse and S. Hanly, “Multiaccess fading channels—part I:
polymatroid structure, optimal resource allocation and throughput
capacities,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2796–2815,
Nov. 1998.

[16] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, 1979.

Sezi Bakım received the B.S. degree in electronics
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