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Abstract—We specify the capacity region for a power-controlled, fading
code-division multiple-access (CDMA) channel. We investigate the proper-
ties of the optimum power allocation policy that maximizes the informa-
tion-theoretic ergodic sum capacity of a CDMA system where the users are
assigned arbitrary signature sequences in a frequency flat-fading environ-
ment. We provide an iterative waterfilling algorithm to obtain the powers of
all users at all channel fade levels, and prove its convergence. Under certain
mild conditions on the signature sequences, the optimum power allocation
dictates that more than one user transmit simultaneously in some nonzero
probability region of the space of all channel states. We identify these con-
ditions, and provide an upper bound on the maximum number of users that
can transmit simultaneously at any given time. Using these properties of the
sum capacity maximizing power control policy, we also show that the ca-
pacity region of the fading CDMA channel is not in general strictly convex.

Index Terms—Capacity region, code-division multiple access (CDMA),
fading channels, iterative waterfilling, power control, sum capacity.

I. INTRODUCTION

Fading may be an important limiting factor in wireless communica-
tion networks unless appropriate resource allocation is applied to ex-
ploit the variations in the channel gains to the advantage of the net-
work capacity. The resources that we concentrate on allocating op-
timally in this correspondence are the transmit powers of the users.
The quality-of-service-based power control approaches assign transmit
powers to the users so that all users satisfy their signal-to-interfer-
ence-ratio (SIR) requirements while transmitting with the least amount
of power. The SIR-based power control assigns powers to the users
with the aim of compensating for the variations in the channel; it as-
signs more power to the users with bad channel states, and less power
to the users with good channel states [3]-[6].

For a single-user fading channel, [7] shows that the optimum power
allocation policy, in the sense of maximizing the ergodic channel ca-
pacity, is a waterfilling of power in time. This policy allocates more
power to the stronger channel states, and less power to the weaker
channel states; it allocates zero power to the channel states below a
threshold level which is determined by the fading statistics.

The capacity of a multiple-access channel (MAC) is expressed as
a region of achievable rates [8], [9], and sum capacity, the maximum
achievable sum of rates is often used as a measure of the overall net-
work capacity. For a multiuser scalar channel, [10] finds the optimum
power allocation policy which maximizes the ergodic sum capacity of
the network. For this system, it was shown that the optimum power al-
location policy is one where each user compares its channel state (nor-
malized by a factor depending on the statistical characterization of the
fading) to those of the other users, and transmits with nonzero power
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only if its normalized channel state is better than or equal to the nor-
malized channel states of all other users. More than one user transmits
simultaneously only if the normalized channel states of multiple users
are the same. Since the channel gains are continuous random variables,
this occurs only with zero probability. Therefore, this power control
policy implies that at most one user transmits (if at all) at any given
time with probability one.

While [10] focuses on the sum-rate point on the capacity region of
the scalar MAC subject to fading, [11] finds the entire capacity region
of such a channel, and specifies the optimal power allocation policies
corresponding to each rate tuple on the capacity region.

There has also been some recent work on power control for vector
multiple-access channels and their associated capacities. For a mul-
tiple-access channel with multiple antennas, [12] solves for the sum ca-
pacity maximizing power allocation at all transmit antennas and gives
a relationship between the maximum number of active transmit and
receive antennas. The problem of maximizing the sum capacity as a
function of the transmit powers in a vector multiple-access channel,
such as a code-division multiple-access (CDMA) or multiple transmit
antenna system, in fading channels, is studied for the case of large sys-
tems and random transmit vectors (signature sequences) in [13] where
a simple single-user waterfilling strategy is proposed and shown to be
asymptotically optimal.

In this correspondence, we focus on a CDMA channel where the
number of users and the processing gain are finite and arbitrary, and the
users are assigned arbitrary deterministic signature sequences. We first
provide the capacity region of a fading CDMA channel where users
have perfect channel state information, and are able to choose their
transmit powers as a function of these channel states, subject to av-
erage power constraints. The capacity region is obtained by a simple
extension of [11], which deals with an equivalent problem in the case
of scalar MAC.

Like for the scalar fading MAC [11], the capacity region of the fading
CDMA is a union of capacity regions obtained for each valid power
allocation policy. One of those power allocation policies, namely, the
one that maximizes the sum capacity, is worth special attention, both
because sum capacity is a commonly used performance metric for mul-
tiple-access channels [10], [12], [13], and because it will aid us in in-
vestigating the strict convexity of the entire capacity region. Thus, we
next focus on the sum capacity maximizing power control policy for a
fading CDMA system. Our problem reduces to K independent Gold-
smith—Varaiya problems [7] when the signature sequences are chosen
to be orthogonal, and to a Knopp—Humblet problem [10] when the sig-
nature sequences are chosen to be identical. The optimum power al-
location policy is a simultaneous waterfilling policy [12] that requires
the solution of a set of highly nonlinear equations. By a simple exten-
sion of the iterative algorithm for the nonfading vector MAC of [14]
to the fading CDMA channel, we develop an iterative power allocation
policy, where, at each step, only one user allocates its power optimally
over all channel states of all users when the power allocations of all
other users are fixed. The power allocation of each user in this iterative
process is a waterfilling where the base level of the water tank is deter-
mined by the inverse of the SIR the user would obtain at the output of a
minimum mean-squared error (MMSE) receiver if it transmitted with
unit power. We prove the convergence of our algorithm to an optimum
solution, and provide conditions for the uniqueness of the solution.

One of the questions of interest, for an arbitrary set of signature se-
quences, is whether there exists a set of channel states having a nonzero
probability where either all or some of the users transmit simultane-
ously. In the case of orthogonal signature sequences, for instance, all
users transmit simultaneously in an orthant of the space of all channel
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states where the channel states of all users exceed their corresponding
thresholds; and, clearly, this region has a nonzero probability. In the
case of identical signature sequences, however, users transmit simulta-
neously only on a half-line in the space of all channel states; and, this
region has a zero probability [10]. In the most general case, the exis-
tence of a region of channel states having nonzero probability where
all (or more than one) users transmit simultaneously depends on the
number of users, the dimensionality of the signal space (processing
gain), and the set of signature sequences being used. We identify the
conditions under which such a nonzero probability region of channel
states exists. These conditions turn out to be very mild; for instance, if
the number of users is less than the processing gain and the sequences
are linearly independent, a simultaneous transmit region for all users
is guaranteed to exist. This region also exists even when the number
of users is larger than the processing gain so long as the signature se-
quences satisfy certain properties. Also, even if these conditions are
not satisfied for all users, there may be a subset of users that are guar-
anteed to transmit simultaneously. This is a result of the fact that the
CDMA scheme with nonidentical signature sequences provides users
with multiple degrees of freedom; therefore, the users do not have to
avoid each other completely in the space of all channel states (as in the
case of scalar channels), that is, multiple users can share some of the
channel states that are favorable to all of them.

The existence of simultaneous transmit regions is of interest to us for
two reasons. First, it serves in proving that the capacity region, unlike
its scalar counterpart, is not strictly convex, provided all of the signature
sequences are not orthogonal or identical. Second, it provides a sense
of fairness, in that while maximizing the overall average rate achieved
by the system, it allows users to access the medium more frequently.
This is in contrast to the scalar channels where each user has to wait
until its channel is the best in order to transmit.

Throughout this correspondence, we will employ the following no-
tation: vectors are represented in bold (&), matrices are represented in
bold and are capitalized (X), and | - | denotes the determinant.

II. SYSTEM MODEL

We consider a symbol-synchronous CDMA system with processing
gain N where all I users transmit to a single receiver site. In the
presence of fading and additive white Gaussian noise (AWGN), the
received signal is given by [15]

K

r= Z \/pihib,'sz- +n D

=1

where, for user i, b; denotes the information symbol with E[b?] = 1,
8 = [sity-.., 5 N]T denotes the unit energy signature sequence, /h;
denotes the random and continuously distributed channel gain, and p;
denotes the transmit power; » is a zero-mean Gaussian random vector
with covariance o> I . We assume that the receiver and all of the trans-
mitters have perfect knowledge of the channel states of all users repre-
sented as a vectorh = [hy. ..., hx] ", and the components of h are in-
dependent. We further assume that although the fading is slow enough
to ensure constant channel gain in a symbol interval, it is fast enough so
that within the transmission time of a block of symbols the long-term
ergodic properties of the fading process can be observed [16].
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Fig. 1. Sample two-user capacity region.

III. POWER CONTROL FOR FADING CDMA
A. Capacity Region With Fixed Sequences and Adaptive Powers

For the CDMA system given by (1), let the transmitters be able to
choose their powers as a function of the channel state, subject to the av-
erage power constraints Ey [p; (k)] < pi. We first characterize the set of
long-term achievable rates, i.e., the capacity region, for fading CDMA.
Hanly and Tse [11, Theorem 2.1] have characterized the capacity re-
gion for a power-controlled scalar multiple-access channel. Both for-
ward and converse parts of the proof of this theorem can be directly
generalized to the CDMA channel, also by incorporating the methods
and results from [9, Proposition 1] and [17, Theorem 1]. Therefore, we
state the capacity region of the fading CDMA channel in the following
theorem, without providing a proof.

Theorem 1: The capacity region of a fading CDMA channel under
AWGN, where users have perfect channel state information (CSI) and
allocate their powers as a function of the CSI subject to average power
constraints Ep[p:(h)] < p; is given by (2) at the bottom of the page.

Fig. 1 illustrates a typical capacity region for some fixed signature
sequences 81 and 82 in a two-user setting. Each of the pentagons cor-
respond to a valid power allocation policy. Note the flat portion on the
capacity region, which in fact is the dominant face of one of the pen-
tagons. Unlike scalar multiple-access channel capacity region [11], the
capacity region for fading CDMA may contain such a flat region, and in
general is not strictly convex. That is, the rate pairs on the line segment
| AB| in the figure are in general achieved by time sharing between the
points A and B. This can be shown by noting that the pentagon con-
taining | A B| corresponds to a power control policy that maximizes the
sum capacity, and then proving that for correlated signature sequences,
there are infinitely many rate tuples that give the same sum rate. This
is stated more precisely in the following theorem.

Theorem 2: The capacity region of a power-controlled fading
CDMA channel is not strictly convex, provided 3i,j € {1,..., K}
such that 7 # j and 0 < slTsj < 1.

Proof: Let P(h) = {pi(h),...,pk(h), Vh} be a power con-
trol policy that maximizes the sum of rates of all users, i.e., the sum ca-
pacity. The capacity region corresponding to this particular power con-
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trol policy is a polymatroid Gp(n), with corners in the positive “quad-
rant” given by

Il\" =+ 0_7251_"6+1Drk+1 (h)sl:rkJrl

1
Rrx =FEp |z log ,
T(k+1) h |5 708 |IN-I-0725FA.DFk(h>SE‘—k|
k=0,....K -1 (3
where 8 = [81...8x], D(h) = diag[pl(h)hi,...,px(h)hxk],
I £ [[(1),....T(K)] is any permutation of {1,...,K},

A

Iy £ [TQ),....,T(k)] for k =1,...,K,and Ty £ &. Dr, and
St, refer to submatrices containing only the received powers and
signature sequences of the users in the subset I';.. Each one of the K'!
possible permutations correspond to a corner point of the polymatroid
Gp(n) in the positive orthant, and these points are also the corners
of the (K — 1)-dimensional dominant face [18] of Gp(n). Note that,
since any point on the dominant face of Gp(py achieves the maximum
sum capacity, it should also lie on the surface of the overall capacity
region C. That is, the dominant face of Gp () constitutes a portion of
the surface of C. Therefore, for the surface of C to be strictly convex,
we need all the corners (3) of the dominant face to collapse to a single
point. It is easy to see that this condition can be summarized by

E, [10g In+o 2S5Du(h)ST H :Z Ex[log (140 >pf (R)1:)].
ek

VEC{l....K}). 4
Define Q,.(h) £ S D (h)"/?. Then for all h, we have

log ‘IN + a*QSEDE(h)sg‘ = log |In + a’ZQE(h)QE(h)T(

)
=log [T + 0 2Qu (W) T Qu (k)|
(6)
<Y log (L+o pi(R)ki) (D)
X<y o)

where the last step follows from Hadamard’s inequality [8], and the
equality is achieved if and only if W (h) £ Q. (k)" Q. (h) is diag-
onal. Since (7) holds for all h, (4) holds when and only when W . (h)
is diagonal for almost all k (i.e., with probability 1). For equality in (7),
we need

[Qum)TQu] = \Jui i (R)hihysis; = 0. Vi j @)

or equivalently

pi(h)p;(h)=0 Vv s/s;=0, Vi#j, Vh. (9
Note that this condition is readily satisfied if ' < N and the signa-
ture sequences of all users are orthogonal, in which case the sum rate is
achieved at a single point rather than on a hyperplane (i.e., on the dom-
inant face of the corresponding polymatroid). Therefore, let us focus
on nonorthogonal sequences. Let 8, 8; # 0 for i % j. Then, for strict
convexity of C, we need p; (h)p}(h) = 0 for almost all h, i.e., except
over a zero probability subset of channel states. In other words, the op-
timal power allocation policy which achieves the sum capacity should
dictate no more than one user transmit simultaneously with nonzero
probability. In Section IV, it will be shown that this is true if and only
if the signature sequences of all users are identical, which establishes
that C is not strictly convex unless all signature sequences are identical
or orthogonal. O

In proving Theorem 2, we made use of the properties of sum-ca-
pacity-achieving power allocation policy. Sum capacity is often con-
sidered as a figure of merit for multiuser systems, because of the ease
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with which it can be handled as an objective function, as opposed to
the more difficult to handle arbitrary rate tuples on the boundary of the
capacity region. In Section III-B, we give the optimal power allocation
policy that maximizes the sum capacity, and propose an algorithm that
updates the powers of the users iteratively and converges to this policy.
In Section IV, we investigate some properties of this optimal power al-
location policy.

B. Sum Capacity, and Optimal Power Allocation via Iterative
Waterfilling

For the CDMA system given by (1), we would like to characterize
the optimum power allocation policy which maximizes the ergodic sum
capacity, i.e., which is the solution to

1
5/10g
s, /p,;(h)f(mdh:ﬁi, pih)>0, i=1,.... K

10)

max

K
In +072S hipi(h)s;s] | f(h)dh
nax, N ; pi(h) f(h)

where f(h) is the joint probability density function (pdf) of the channel
states. For arbitrary signature sequences, no closed-form solution for
this problem is known. It is interesting to note that (10) reduces to the
Knopp—Humblet problem [10] if the signature sequences are identical,
i.e., 8; = s for all 7, and it reduces to K separable Goldsmith—Varaiya
[7] problems, if the signature sequences are orthogonal, i.e., sls ;=0
for i # j, in which case each problem can be solved independently
of the others. Our aim is to characterize the optimal power allocation
policy for the most general case where the signature sequences are ar-
bitrarily correlated, i.e., s,-,Ts,» is not restricted to be zero or one, and
investigate the properties of this policy.

We can express the ergodic sum capacity, the objective function of
(10), as

OSI]]TI = Ck + ak (11)

where

1 _ ‘
Cp = 5/1og (1 +hkpk(h)skTAk1sk) F(h)dh

12)

represents the contribution of the kth user to the sum capacity when the
transmit powers of all other users at all channel states are fixed, and C'x
represents the sum capacity of the remaining users when the kth user
is removed from the system. In (12), Ay, is defined as

A, = (TQIN =+ Z hip,;(h)s,;s?.
ik

(13)

It is worth noting that Csum, the objective function in (10), is a con-
cave function of the powers, and moreover, provided that the matrices
{si8] }<, are linearly independent, it is a strictly concave function
of the powers [13, Proposition 4.2]. Also, the constraint set in (10)
is convex. Therefore, the optimization problem in (10) has a unique
global optimum when {sis?}f‘;l are linearly independent; and all
local optimums yield the same objective function value otherwise.
A more general version of this optimization problem with multiple
antennas is solved in [12], where the solution is left in terms of the
Karush—Kuhn-Tucker (KKT) conditions. Here, we derive the solution
of the power control problem specifically for the CDMA system, as
we shall use it in our future discussions in Section IV. The extended
KKT conditions with mixed constraints [19, Ch. 13] reduce to

hk SZA;lsk

2 < Ag.
L+ pe(mhes] A s =

k=1,....K, Yhe R* (19
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which is satisfied with equality if pr > 0. Using the fact that pr > 0
for all £, (14) implies that the capacity-maximizing power allocation

policy satisfies
+
) , k=1,....K

for any realization of the channel h. Here, the Lagrange multipliers Ay
are determined by inserting (15) into the average power constraints in
(10). The values of Ax’s depend on the statistical characterization of the
channel and the choice of signature sequences. This solution is similar
in structure to the solution in [13], however, it is more general in that
it is valid for any continuous joint fading distribution, any power con-
straints, and any finite number of deterministic signature sequences, as
opposed to the symmetric and asymptotical situation in [13]. Note that
even though the continuity and independence assumptions on fading
will be needed in order to prove the simultaneous transmission condi-
tions for the optimal power allocation policy in Section IV, the charac-
terization of optimal power allocation policy in (15) does not require
these assumptions.

For arbitrary signature sequences, the set of equation (15) is highly
nonlinear, and their solution is intractable for systems with large
numbers of users. Note that (15) implies that all users should simul-
taneously waterfill on the “base levels” constituted by the inverse of
the SIRs they would obtain if they transmitted with unit powers, i.e.,
h ksZAzlsk for user k. Since solving for the simultaneous water-
filling (where each user’s power allocation is given by a single-user
waterfilling, but depends on the other users’ powers) solution for all
users seems intractable, we devise an iterative algorithm. Consider
optimizing for the power of only user k over all channel states, given
the powers of all other users at all channel states

1 1

- 15
)\k hkSZAIZISk ( )

p(h) = (

n+1l __ n+1 nt+l n on
Pr —-argr%axClmn1(p1 NN VY O R g
k

16)

arg max C (px)
Pk

where C (px) denotes the contribution of user ¥ to Csym, as defined
in (12). Ci(px) depends on the power distributions and signature se-
quences of all other users through A, s which change as a function of
the channel state. The solution of (16) can be found as a single-user
waterfilling over all channel states of the system,

pu(h) = (i - ;y (17)
P - 5\14 hkSZAlzlsk

where )}, is the Lagrange multiplier corresponding to the single-user
optimization problem in (16). If we let only one user allocate its power
over all channel states using (17), and iterate over all users sequentially,
this iterative one-user-at-a-time algorithm is guaranteed to converge to
the global optimum solution of (10), since the objective function Csym
is a concave function of powers, Ci(px) given by (12) is a strictly
concave function of py, the constraint set for powers over which the
maximization is to be performed is convex, and has a Cartesian product
structure among the users, see [20, Proposition 3.9].

IV. PROPERTIES OF THE OPTIMAL POWER ALLOCATION

Let us now consider the inverse problem of finding the channel state
of the system for a given transmit power vector with nonzero com-
ponents. Since all components of the power vector are nonzero, this
means that all users transmit simultaneously at this particular channel
state, and (14) should be satisfied with equality for all &. Therefore,
given any arbitrary power vector p with 0 < p; < 1/, the channel
state where this power vector is used can be found by solving

h=f(h) (18)
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where the vector function f(h) is defined as

A 1
1—ips) s,jA;lsk’

fe(h) = ( 19
Our first goal is to show that there exists a unique vector b of channel
states corresponding to any given nonzero solution p to the power con-

trol problem. To this end, we first need to prove some properties of the
function f(h).

Definition 1 ([5]): f(h) is standard, if for all h > 0, the following
properties are satisfied.

* Positivity: f(h) > 0.

« Monotonicity: If h > k' then f(h) > f(h').

o Scalability: For all « > 1, af(h) > f(ah)

Lemma 1: Let0 < pi < 1/Ag, for all k. Then, f(h) is standard.
Proof: For notational convenience, let us define

e St (els) 4o’ (da)
gr(h,er) = (1= Xepr) (czsk)z
Ak CZAkck

= . 21
(1= Aepr) (c,\Tsk)z @b

(20)

Then, interpreting ¢, as a linear receiver filter, we can relate fi(h) to
gr(h, ex) by

fe(h) = min gi(h, cx) (22)

where the filter that minimizes g (h, ¢x) is ¢, = A;lsk, i.e., a scaled
version of the well-known MMSE filter.
For 0 < pr < 1/Ak, gr(h, ex) > 0 for any ¢, due to nonzero noise
variance. Then, fi(h) = mine, g (h,cx) > 0 proving the positivity.
For monotonicity, let b > &'

fr(h) = min gi (h, ¢x) (23)
e

=gu(h.cp) (24)

> gi(h,cp) (25)

> Hgin gr(h . ex) = fr(h'). (26)

Inequality (25) follows from (20) noting that A > h’ and ¢y, is fixed.
For scalability, we pick @ > 1

afi(h) = o'min gi (h, ex) @7
= agr (h, CZ) (28)
> gk((l(h, CZ) (29)
> min g (ah, ex) = fr(ah). (30)

Inequality (29) follows from (20) noting that « > 1 and ¢y, is fixed. OJ

Note that, since f(h) is standard, if there is a solution for (18), it
is unique [5]. In fact, one can devise an iterative algorithm to find this
solution

h(n+1) = f(h(n)). @31
It is interesting to note that the problem in (18) with the definition of
f(h)in(19) is very similar to the joint power control and linear receiver
filter design problem studied in [21].

In [21], the problem is to solve for the componentwise smallest
power vector p and the receiver filters {¢;}/_; such that all users
satisfy their SIR-based quality-of-service requirements. For a single
receiver site (e.g., single-cell) system, the problem becomes that of
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finding componentwise smallest power vector and receiver filters that
satisty

prhi (ef 8e)”
> iz Dilii (Czsi)z + 02 (e ex)

where 3, k = 1,..., K are the SIR targets.

When there are no maximum power constraints, solving for optimum
transmit powers p and received powers ¢ where qx. = pihy are equiv-
alent. The optimum transmit powers can be found using the optimum
received powers via p;, = qj/h%. Then, from (32) and (13)

SIR; =

> Bk (32)

2

_ I (Clj Sk)
C. ef Agey

For any given powers, ¢, should be chosen to be the MMSE filter as it

maximizes the SIR [21]. Using the MMSE filters ¢, = akA,:lsk, the
problem becomes that of solving for ¢ in

SIR, > Bi. (33)

q;\»s;(rA,jlsk = fs. 34)

While [21] developed a distributed iterative algorithm that converges
to the optimum powers (and receivers) assuming that the problem is
feasible, [22] found the conditions on the SIR targets {3; }/~; and the
signature sequences {8, } =, that guarantee that the problem is feasible,
i.e., positive gz ’s that satisfy (34) exist. The SIR targets 31, ..., 3 are
feasible if and only if [22, Theorem 10]

Z 1+ 0 < rank(S(U)),

kel

YUC{l....K} (35

where S(U) is the matrix containing the signature sequences of the
users in the subset U.

In our problem, the channel gains are found for any given power
vector by solving (18),

AkPk
(1= Aepr)’

Since there are no maximum constraints on the channel gains, solving
for hj, and ¢ = hipi are equivalent, as we can obtain the solution
for hy, using the solution for i via hj = g}, /px. Thus, our problem is
equivalent to (34) where (3 are given by

hkpkszA]:lSk = (36)

AkPk
(1= Awpr)’

and are determined by the given power vector. The set of feasible
powers can then be found by inserting (37) into (35)

> Aipr <rank(S(U)), VU CA{L,....K}.

kel

Bk = (37

(3%

Therefore, once we fix a power vector satistying (38), (18) has a unique
solution, since f(h) is standard. That is, the power vector we chose is
a possible candidate for the optimum power allocation at the channel
state obtained by solving (18). This means that, corresponding to a set
of feasible power vectors, there always exists a set of channel states
where all of the users in the system transmit simultaneously. This set,
however, can have zero probability as in [10], which is the result of
the fact that, although we can find a unique channel state for a feasible
power vector, multiple feasible power vectors may correspond to the
same channel state, i.e., there may be multiple optimum power vectors
with the same Cg,m. That is, the mapping between the powers and the
channel states is not one-to-one, in general.

The significance of (38) for our purposes is that the set of feasible
power vectors constitutes a volume in K -dimensional space. For the
set of feasible power vectors satisfying (38), and having strictly pos-
itive components, if the set of corresponding channel states found by
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solving (18) have a nonzero measure, then we can conclude that all
users transmit simultaneously with a positive probability.

Theorem 3: There exists a nonzero probability region of fading
states h where all K users transmit simultaneously, if and only if
{8;8] }I£, are linearly independent.

Proof: It is clear that the set of feasible powers as given by (38)
constitutes a volume V" in R* . Let us then pick any point p, > 0 in this
set, and compute the channel state which corresponds to this particular
solution of powers. By feasibility of p,, the resulting channel state hq
is unique, and the original vector p, satisfies the KKT conditions at hg.
Given {s;8; }[*, are linearly independent, we know that there exists
a unique global maximum for Cs,m since it is strictly concave. There-
fore, the waterfilling solution we get at the fading state ho should be
equal to p,, as it is a possible solution to the problem, and the problem
has a unique global optimum. Hence, we obtain a unique fading state
for a power level, and a unique power for a fading state, for a set of
powers satisfying (38). This implies that there exists a one-to-one map-
ping from the space of feasible strictly positive powers to the space of
fading states. This one-to-one mapping maps the volume V' C RX of
feasible powers to a volume of fading states vV c R¥ implying that
the resulting set of fading states where K users transmit simultaneously
has nonzero probability. This completes the proof of the if part.

For the only if part, consider the case where {8:8; } '~ ; are linearly
dependent. For all K users to transmit simultaneously with nonzero
powers, (14) must be satisfied with equality for all k. By applying the
matrix inversion lemma, and defining A = o*In + SPST, which
contains all users’ powers and signatures, (14) can be written in the
alternative form

hnsi A7 s, = A, k=1,...,K. (39)
Each of these equations can also be rewritten as
hytr (A sksk) X\, k=1,....K (40)

If {s;s; }/<; are linearly dependent, then any one of the elements of
this set, say 3;432—, can be written as a linear combination of the others,
say, with coefficients «;, not all equal to zero. Thus,

hitr <A1 Zcusi.s;r) = hy st,TAflsi =\ 41)
i#k i2k
and using (39) in (41), we get
Z i h, hk ) (42)

This means that, if {s;s;] }/_; are linearly dependent, then regard-
less of the power levels, for all users to transmit simultaneously, the
channel states should satisfy (42). Since the channel states are contin-
uous random variables, this event has zero probability. Therefore, given
that {s 8; } are linearly dependent, all K™ users transmit simulta-
neously only w1th zero probability. O

Therefore, the necessary and sufficient condition for all & users to
transmit simultaneously with nonzero probability is that the signature
sequences are such that the matrices {8;8; } ~ are linearly 1ndepen-
dent. Our first corollary states that if the signature sequences {8; }/=;
are linearly independent, then {s;s, }/_; are linearly independent and
all users transmit simultaneously with nonzero probability.

Corollary 1: When I{ < N, for a set of K linearly independent
signature sequences, there always exists a nonzero probability region
of channel states where all I{ users transmit simultaneously.
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TX boundary for user 2

TX boundary for user 1]

h

Fig. 2. Transmit region boundaries for two users with correlated signature
sequences.

Proof: Assume that {s;}/L, are linearly independent. For

{sis;r K tobe linearly dependent, we should be able to write
sks,j = 2:(.1:,;5,;5,7T (43)
i#k

with at least two nonzero «;’s; if only one «; is nonzero, this im-
plies that two signature sequences are the same violating the fact that
{s; }f‘; | are linearly independent. The ranks of both sides of (43) have
to be equal. As {s;}/*; are linearly independent, the rank of the right-
hand side is equal to at least two, whereas that of the left-hand side is
always one. Therefore, the set {sis;r}f‘; | are linearly independent for
linearly independent signature sequences, and the result follows from
Theorem 3. O

Itis hard to find closed-form expressions for the region of the channel
gains where all users transmit simultaneously. For a simple two-user
system, it can be shown that both users transmit with nonzero powers
when h belongs to a region expressed by

)\20’2111

)\10’2]1#_7 ]‘l S
27 h (1—=p2)+p202X;

ho (1= p2) + p202)y’

hy > (44)

where p = 87 82 denotes the cross correlation between the signature
sequences of the users. This region is depicted in Fig. 2.

It is interesting to note that when % goes to infinity, the lower bound
on hy approaches the limit \yo? /(1 — p?), and as h; goes to infinity,
the lower bound on hs goes to A2 /(1 — p?). These are the two (hor-
izontal and vertical) asymptotes shown in Fig. 2. For more than two
users, even though the exact expressions for the boundaries of the si-
multaneous transmission region are nonlinear and complex, we can de-
scribe an “orthant” of the space of all channel states where all users
transmit simultaneously. This orthant is a subset of the actual simulta-
neous transmission region.

Theorem 4: For a set of I linearly independent signature se-
quences, the region of channel states where all users transmit
simultaneously includes an “orthant” in R described by

hy > Asz(Ril)kk, (45)

where R = 8§78 is the correlation matrix of the signature sequences.
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Proof: From (14), user k transmits when its channel state A, sat-
isfies

A 1
(1= Nepr) sT A sy

hie = (46)

The transmit power of the user satisfies 0 < pr < 1/Xg. Therefore,
user k transmits with nonzero power if and only if

Ak

hi > ———
, ——
sl A sy

47

Comparing the right-hand side of (47) with (19), it is easy to see that it
is a standard function and is increasing in p; h;, i # k. Thus, from the
monotonicity of Az /s A} ' 81 we have

Ak

2
Aro” < ——g—
sTA s

< Mo (R ) (48)

where the first inequality is satisfied with equality when the received
powers p;h; of all other users are zero, and the second inequality fol-
lows from the fact that the SIR of the linear MMSE detector is always
larger than or equal to the SIR of the decorrelating detector. In fact, the
upper bound becomes tight as p;;, i # k go to infinity for a fixed
noise variance o2, as the MMSE detector converges to the decorrelator
[15]. Now, if the channel gains are such that

hi > Ao (R™ )k, E=1,...,K (49)
using (48) we get
he > Ao (R™ ek > M k=1 K (50)
3 k kk_skTA;1sk7

and conclude that all users transmit in the region of channel states
where hy, > Ao (R pr, k= 1,..., K. O

It is worth mentioning that Theorem 4 could also have been used to
prove Corollary 1, by noting

P [all users transmit] > P [h the > )\k(rQ(R_1 )kk] > 0. (51)

Fig. 2 illustrates the statement of Theorem 4 for two users with corre-

lated signature sequences. The orthant described in the theorem in this
case is the infinite rectangle

(/\10'2(R_]>11,OO) X (/\QJZ(R_]>22,OO) .

Since, as stated by Theorem 3, for all K" users to transmit simultane-
ously {sie?,ﬂT ,A:1 should be linearly independent, the number of users
transmitting simultaneously with nonzero powers cannot be arbitrarily
large. The following corollary to Theorem 3 gives a bound on the max-

imum number of users that can transmit simultaneously.

Corollary 2: For a set of I{ signature sequences and processing
gain N, let the rank of the signature sequence matrix S be M <
min{K, N}. Then the number of users that can transmit simultane-
ously cannot be larger than min{ K, M (M + 1)/2}.

Proof: If K < M(M + 1)/2, the bound is trivial. Let us focus
on the case X > M(M + 1)/2. If rank(S) = M, the signature
sequences can be written as

M

8 = E AR V;

=1

(52)
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where the N x 1 vectors {v; },“i 1 constitute an orthonormal basis span-
ning the signature sequences. Then

K K M M

T T
Zaksksk = ZZZakva‘kiahvivj (53)
k=1 k=1 :=1 j=1
M M K
T
= Z Z‘vi’l)j Z(}'kaki(l,kj (54)
i=1 j=1 k=1
MM
=Y siviv] =VBV' (55)
i=1 =1
where V' is a matrix with columns v; and B;; = 3;;, with 3;; de-

fined by (55). Therefore, {s;s; }/_; are linearly independent if and

only if the equality VBV =0nxxn implies i, =0, k=1,..., K.
Note that V is an orthonormal matrix by construction, and if VBV T =
O x ~ then multiplying this by V' and V' from left and right we obtain
B = 0,4 x 1. This dictates

K

1=

K
E Ogagiar; =0

i.j€{1,... M) (56)
k=1
K
Z a’kdkakT =0mxm 57
k=1
where @, = [ak1,..., a5 M]T. The dimensionality of the space of

M x M symmetric matrices is M (M + 1)/2, therefore, if K >
M(M 4+ 1)/2, we can find o not all zero, such that (57) is satisfied,
and {sisiT }f; , are guaranteed to be linearly dependent, and the result
follows from Theorem 3. O

So far, we have established results that relate to the simultaneous
transmission of all users in the system. In order to complete the proof
of Theorem 2 of Section III-A, we need a simultaneous transmission
result similar to the one in Theorem 3, for any pair of users rather than
all K users. The following is an extension of the simultaneous trans-
mission result given for all users by Theorem 3 to an arbitrary subset
of {1,...K}.

Theorem 5: The sum capacity maximizing power control policy
dictates that there exists a nonzero probability region of fading states
h where asubset E C {1,..., K} of users transmit simultaneously, if
and only if {31'3,'T }iew are linearly independent.

Proof: The only if part follows immediately from the proof
of Theorem 3, by letting {s:8, }icx be linearly dependent, and
writing any s;.8/ , k € E as a linear combination of the remaining
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matrices {8;8, }icr, izx. This, together with the KKT conditions for
optimality, gives the following relation between the channel gains:

>

i€R, itk

A Ak
)i — = T— 58
@ h; R (58)
which is a zero probability event by virtue of the channel states being
continuous random variables. This proves the only if part.
We show the if part by proving that the probability

P {pi(h) >0, i € E}

is bounded away from zero for linearly independent {sisy}ie  (see
(59)-(64) at the bottom of the page). Here, (59) follows from the fact
that the set on the right-hand side is a subset of that on the left-hand
side, (60) follows because user j does not transmit regardless of the
powers of other users if h; < 02)\‘,-, (61) follows from (47), and (62)
follows because users j ¢ E have zero powers, within the set in (61).
Note that in (62), the powers p (h), which are given by (15), actually
depend only on the channel states of users in £. Thus, we define

pe(hr) = pr(h)|p; (h)=0, keE, j¢E. (65)
Then, (63) follows from independence of the channel states for dif-
ferent users, where the vector hg is defined as the vector of channel
states for users in E. Clearly, the second term on the right-hand side
of (63) is positive.In order to prove (64), we will interpret the first
term in (63) as the probability that all users transmit simultaneously
in an equivalent | E/| user problem. To accomplish this, consider a ficti-
tious problem, where we have only the users £ € E in another CDMA
system, and users k£ € E still employ the signature sequences 8. The
noise variance o is also the same as in our original problem (1). Say
we would like to maximize the sum capacity for the new system with
| E| users, and let each user i € E have a power constraint given by

7= / pi(hp)f(hp)dhp. (66)

Then power allocation {p;(hr)}ier is optimal in the sense of maxi-
mizing the sum capacity for the fictitious subproblem. Consequently,
the first term in (63) is simply the probability that all users transmit
with nonzero powers for this new problem, and by Theorem 3, this
probability is greater than zero as long as {s;s, }icy are linearly in-
dependent, which establishes the if part. O

Finally, let us now return to the proof of Theorem 2, where we estab-
lished that for strict convexity of the boundary of the capacity region, no

P{pi(h) >0, i € E} > P{pi(h) >0, i € E, p;(h) =0, j ¢ E} (59)
>P{pi(h)>0,i€E, hj<o’)\;, j¢E} (60)
i . .
:P{hi > TATe i€ E, h; <o)X, j §EE} (61)
)\i . 2 .
=P<lh; > ——. i €E hj<o’);, j¢ FE (62)
37 {IN + o2 ZkeE-kii hkpk(h)SkSZ} 8;
>\1‘, . 2 .
=P<Jh > — 1 EE P{hjga Ajs 7¢E} (63)
SlT {IN + o2 Zk:ef«?,k?ﬁi ll,kpk(hE)SkSZ} 8;
> 0. (64)
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Fig. 3. Power distribution of user 1 in Rayleigh fading.

two users with nonorthogonal sequences should be transmitting simul-
taneously with positive probability. In the following corollary to The-
orem 5, we show that two users transmit simultaneously with nonzero
probability, unless they have identical signature sequences, which com-
pletes the proof of Theorem 2.

Corollary 3: Let there exist two users ¢, j such that 0 < 8] 8; < 1.
Then, there exists a region of channel states with nonzero probability
where users ¢ and j transmit simultaneously.

Proof: This result follows straightforwardly from Theorem 5 by
noting that 8 8; < 1 is equivalent to two signature sequences being
nonidentical, which is in turn equivalent to s;s, and s; 3]T being lin-
early independent. (I

V. NUMERICAL EXAMPLES

In this section, we give some simple numerical examples to support
our analysis. Figs. 3 and 4 give an example for the two-user case where
the signature sequences are correlated with 87 s> = 0.966. In this ex-
ample, the processing gain is N = 2, the channel is an independent
and identically distributed (i.i.d.) Rayleigh channel with parameter 1,
that is, hx, K = 1,..., K are exponential random variables (squares
of Rayleigh random variables) with mean 1. Fig. 3 shows the power of
user 1 for each fading level. In this figure, the transmit power of user
1 is represented by gray levels, lighter colors corresponding to more
power. Note that, user 1 performs a single-user waterfilling wherever
user 2 does not transmit. In this region, the transmit power of user 1 for
a fixed h is constant (independent of h2). However, once user 2 starts
transmitting, the “base level of the water tank” is increased, decreasing
the power level of user 1 with increasing h.. Fig. 4 shows the transmit
regions in the space of channel states of the two users. The small dark
region near the origin corresponds to the channel states where both
users have zero power. Gray regions marked by “user 1” and “user 2”
show the channel states where only one of the users transmits, whereas
the white region shows the simultaneous transmit region. The simu-
lated system corresponds to the setting in Corollary 1, and Theorem 4.
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Transmit Regions
| | 1

User 1

Users 182
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Fig. 4. Transmit regions for Rayleigh fading.

Power Distribution of User 1
2 | 1 n L . |

Fig. 5. Power distribution of user 1 in uniform fading.

We have noted earlier that the optimal power allocation depends on
the fading distribution only through the thresholds Ax. Therefore, the
choice of channel fading distribution should not affect the structure of
the transmit regions, except for possible shifts and scalings. To show
this, we repeat our simulations for a channel where A, are uniform
i.i.d. random variables in (0, 2], all other parameters being the same.
Figs. 5 and 6 show the corresponding power levels and transmit regions,
for this narrower span of possible channel states to emphasize better
all four of the transmit regions. We see that the ;. value is slightly
changed by the change in channel distribution, but the transmit regions
and power distribution are very similar to the previous case.
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Fig. 6. Transmit regions for uniform fading.
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Fig. 7. Sum capacity versus number of iterations.

Fig. 7 illustrates the convergence of the iterative waterfilling algo-
rithm to the maximum sum capacity of the system under uniform fading
U(0, 2], with average transmit powers equal to p, = 1 and noise vari-
ance equal to o = 0.1; the convergence is quite fast as suggested by
the plot.

A consequence of Theorem 3 is that we can have multiple users
transmit simultaneously with nonzero probability, even when the sig-
nature sequences are linearly dependent, as long as we can have the
linear independence of {51'3?}{‘; ;. Fig. 8 shows the region where all
users transmit for X' = 3 and N = 2, the portions marked in gray
correspond to the states where all three users transmit simultaneously,
in the three-dimensional channel state space.
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Fig. 8.

Transmit region for all three users when ' = 3 and N = 2.

In general, the probability that all users transmit simultaneously, i.e.,
the probability of the gray colored region, depends on the cross corre-
lations between the signature sequences, fading statistics, and power
constraints. As an example, for a system with K’ =3, N =2,p =1,
o? = 0.1, uniform U(0, 1) fading, and the correlations between the
sequences p12 = 0.898, p13 = 0.645, p23 = 0.916, the probability
that all users transmit simultaneously is 0.245.

VI. CONCLUSION

We provided the capacity region for a power-controlled fading
CDMA system, and proved that unless all users have orthogonal or
identical sequences, it has a flat portion on which the sum capacity
is maximized; i.e., it is not strictly convex. This yields the important
result that, sum capacity may be achieved by infinitely many rate
tuples, so one might have flexibility in choosing the individual rates of
the users while keeping the sum capacity constant at its maximum.

We devised an algorithm to compute the optimum transmit powers
of the users that maximize the sum capacity of a CDMA system with
arbitrary signature sequences in a fading channel. The algorithm is an
iterative waterfilling of powers of all users over all fading states treating
at each step all other users’ signals as additional colored noise. We
showed that this iterative strategy converges to a globally optimum so-
lution, and that the global optimum is unique if the signature sequence
set is such that the matrices {sisr}{‘; | are linearly independent.

We also showed that the optimum power allocation scheme in the
vector multiple-access channel of interest dictates more than one user
to transmit simultaneously at some channel states, and the set of such
channel states has a nonzero probability under certain mild conditions
on the signature sequences. In fact, all I users in the system are shown
to transmit simultaneously with nonzero probability, if and only if
{s;8] } I are linearly independent. An immediate implication of this
is that, if the signature sequences {s;}/=; are linearly independent,
then all users transmit simultaneously in a nonzero probability region
of the channel states. We extended this simultaneous transmit condition
for all users to one for an arbitrary subset of users, and used it to prove
the nonstrict convexity of the capacity region. We further showed that
if the signature sequence matrix .S of the users in the system has rank
M, the number of users transmitting simultaneously with nonzero
probability cannot be larger than min{ K, M (M + 1)/2}.
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Optimality and Suboptimality of Multiple-Description
Vector Quantization With a Lattice Codebook

Chao Tian, Student Member, IEEE, and
Sheila S. Hemami, Senior Member, IEEE

Abstract—The asymptotic analysis of multiple-description vector quan-
tization (MDVQ) with a lattice codebook for sources with smooth proba-
bility density functions (pdfs) is considered in this correspondence. Goyal
et al. observed that as the side distortion decreases and the central distor-
tion correspondingly increases, the quantizer cells farther away from the
coarse lattice points shrink in a spatially periodic pattern. In this corre-
spondence, two special classes of index assignments are used along strategic
groupings of central quantizer cells to derive a straightforward asymptotic
analysis, which provides an analytical explanation for the aforementioned
observation. MDVQ with a lattice codebook was shown earlier to be asymp-
totically optimal in high dimensions, with a curious converging property,
that the side quantizers achieve the space filling advantage of an n-dimen-
sional sphere instead of an n-dimensional optimal polytope. The analysis
presented here explains this behavior readily. While central quantizer cells
on a uniform lattice are asymptotically optimal in high dimensions, the
present authors have shown that by using nonuniform rather than uniform
central quantizer cells, the central-side distortion product in an MDSQ can
be reduced by 0.4 dB at asymptotically high rate. The asymptotic analysis
derived here partially unifies these previous results in the same framework,
though a complete characterization is still beyond reach.

Index Terms—Asymptotic analysis, lattice quantization, multiple de-
scription, vector quantization.

I. INTRODUCTION

In a multiple description (MD) coding scenario, information on the
source samples are sent on two channels, each of which may fail. The
source coding should provide acceptable reconstruction when only one
channel works, and higher quality reconstruction when both channels
work. Achieving such multiple descriptions through quantization [2],
[4]-[6] can be understood as using two coarse quantizers (the side
quantizers) to provide the two descriptions, which can be combined to
form a finer quantizer (the central quantizer). Two steps are required:
in the first step, the central quantizer functions as a classical quantizer,
giving an index . In the second step, the index assignment provides a
map from the single index [ to an index pair «(1) = (p, ). The indices
p and ¢ serve as the two side quantizers’ indices, which are transmitted
over the two channels.

The MD problem is most often considered in the balanced case,
in which the two descriptions are at the same rate and generate the
same distortions, and this case is assumed in this correspondence. The
distortion generated by each of the two side quantizers is called the
side distortion and the distortion generated by the central quantizer is
called the central distortion. In the balanced case, rate distortion theory
reveals that there is a tradeoff between the side and central distortions
[3], [7]. Let mean-squared error be the distortion measure (and it will
be the distortion measure adopted in this correspondence). If the side
distortion is of the form
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