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Abstract—We consider an energy harvesting two user coop-
erative Gaussian multiple access channel (MAC), where both
of the users harvest energy from nature. The data packets
arrive intermittently over time. The users overhear each other’s
transmitted signals and can cooperate by forming common
messages. We find the optimal offline transmit power and rate
allocation policy that maximize the departure region. We first
show that there exists an optimal policy, in which the single user
rate constraints in each time slot are tight, yielding a one to one
relation between the powers and rates. Then, we formulate the
departure region maximization problem as a weighted sum rate
maximization in terms of rates only. Next, we propose a sequential
convex approximation method to approximate the problem at
each step and show that it converges to the optimal solution.
Finally, we solve the approximate problems using an inner outer
decomposition method. Numerically, we observe that higher data
rates can be supported with the same amount of energy.

I. INTRODUCTION

We consider the cooperative energy harvesting MAC model
illustrated in Fig. 1. The data packets and the harvested
energies arrive at the transmitters intermittently over time. We
determine the optimum power and rate allocation policies of
the users which maximize the departure region of the system.

There has been a considerable amount of recent work in
power control for energy harvesting communications [1]–[24].
In [1], the transmission completion time minimization problem
is solved for an unlimited-sized battery. In [2], the throughput
maximization problem is solved and its equivalence to the
transmission completion time minimization problem is shown
for an arbitrarily-sized battery. In [3], [5]–[10] the problem
is extended to fading, broadcast, multiple access and interfer-
ence channels. Throughput maximization problem with battery
imperfections is considered in [11], [12] and processing costs
are incorporated in [13]–[15]. Two-hop communication is con-
sidered with energy harvesting nodes for half- or full-duplex
relay settings in [16]–[21]. Energy cooperation is introduced
in [22]. Of particular relevance to us are references [8], [9],
[23]–[25] where optimal scheduling problems on a MAC are
investigated. In [25], minimum energy scheduling problem
over a MAC where data packets arrive over time is solved. In
[8], a MAC with energy arrivals is considered with infinitely
backlogged users, i.e., the data packets do not arrive over time.
In [9], an energy harvesting MAC with additional maximum
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Fig. 1. Cooperative MAC with energy and data arrivals.

power constraints on each user is considered. Recently, in
[23], a MAC with both energy and data arrivals is considered
and in [24], a cooperative MAC with only energy arrivals is
considered. In this paper, we consider a cooperative MAC with
both energy and data arrivals.

We first show that there exists an optimal rate and power al-
location which is on the achievable rate region boundary of the
cooperative MAC at every slot, instead of being strictly inside
the achievable rate region. Then we formulate the problem in
terms of data rates only, rather than both transmission powers
and data rates. Although, this new problem is non-convex,
we show that strong duality holds. As a result, we are able to
employ a successive convex approximation technique in which
non-convex constraints are approximated by suitable convex
functions. Using this approximation, we solve the problem
using an iterative algorithm which iterates between inner and
outer maximization problems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an energy harvesting cooperative MAC with
intermittent data and energy arrivals, as shown in Fig. 1. The
harvested energies are saved in the corresponding batteries.
There are N equal length slots. We use subscripts 1 and 2 to
denote the parameters of users 1 and 2. In slot i, there are
energy and data arrivals to both users with amounts E1i, E2i



and d1i, d2i, respectively. We denote the transmission powers
and data rates of users 1 and 2 as p1i, r1i and p2i, r2i,
respectively. The physical layer is a cooperative Gaussian
MAC with unit-variance Gaussian noises at the users and
σ2 variance Gaussian noise at the receiver. We employ the
delay constrained cooperation model proposed in [24]. The
users cooperate in a slot by slot basis, by first exchanging
information and then beamforming, to send the established
common information, in each given slot. The specifics of the
encoding and decoding policy can be found in [24, Section
II]. The achievable rate region with transmitter sub-powers
p12i, p21i, pU1i, pU2i at each slot i is given as [24], [26]:

C(p12i, p21i, pU1i, pU2i) =

{
r1i ≤ f(1 + p12i), (1)

r2i ≤ f(1 + p21i), (2)

r1i + r2i ≤ f(Si/σ
2)

}
(3)

where f(x) = 1
2 log(x) and Si = σ2+p1i+p2i+2

√
pU1ipU2i,

p1i = p12i + pU1i, p2i = p21i + pU2i. For notational
convenience, we denote the sub-power and rate sequences by
the vectors p12,p21,pU1,pU2, r1, r2.

The energy that has not arrived yet cannot be used, leading
to the following energy causality constraints:

k∑
i=1

p1i ≤
k∑
i=1

E1i, 1 ≤ k ≤ N, (4)

k∑
i=1

p2i ≤
k∑
i=1

E2i, 1 ≤ k ≤ N. (5)

The data that has not arrived yet cannot be transmitted, leading
to the following data causality constraints:

k∑
i=1

r1i ≤
k∑
i=1

d1i, 1 ≤ k ≤ N, (6)

k∑
i=1

r2i ≤
k∑
i=1

d2i, 1 ≤ k ≤ N. (7)

The rate allocations must be achievable for the cooperative
MAC in each slot:

(r1i, r2i) ∈ C(p12i, p21i, pU1i, pU2i), 1 ≤ i ≤ N. (8)

The departure region maximization problem can be stated as
a weighted sum rate maximization for given priorities 0 ≤
µ1, µ2 ≤ 1, due to the convexity of the departure region:

max
p12,p21,pU1,pU2,r1,r2≥0

µ1

N∑
i=1

r1i + µ2

N∑
i=1

r2i

s.t. (4)-(8) (9)

III. NECESSARY CONDITIONS AND OPTIMAL PROFILE

In this section, we prove some properties of the optimal
solution.

Lemma 1 There exists an optimal profile that satisfies the
following property,

r1i = f(1 + p12i), r2i = f(1 + p21i), ∀i (10)

Proof: We will prove this lemma by showing that for any
policy that does not satisfy the above property, there exists
another policy that satisfies it and achieves the same weighted
sum rate. Assume there exists an optimal policy and slot i
such that r1i < f(1+p12i). Now consider the modified policy,
q12i = p12i − ε, qU1i = pU1i + ε while keeping the remaining
variables fixed. In this modified policy, q1i = q12i + qU1i =
p12i + pU1i = p1i, therefore the new policy spends the same
amount of energy as the previous one and is energy feasible.
It is easy to check that this modification increases Si and
(r1i, r2i) still belongs to the set C(q12i, p21i, qU1i, pU2i). Since
we have not changed the rates, the data causality constraints
are still feasible. By repeating this process we will reach a
profile where r1i = f(1 + p12i). By using similar arguments
for r2i and modifying p21i and pU2i we will reach a profile
where r2i = f(1 + p21i). Since we have not changed the
rates, the weighted sum rate is the same and the policy is still
optimal. This proves the lemma. �

By using Lemma 1 and enforcing the constraints in (10) the
sum rate constraints in (3) can be written as

f(1 + p12i) + f(1 + p21i) ≤ f(Si/σ
2), ∀i (11)

In addition to the rate-power relationships dictated by
Lemma 1, we further introduce the auxiliary rate variables,
rU1i, rU2i, and perform the variable changes, rU1i = f(1 +
pU1i), rU2i = f(1 + pU2i). Then Si = σ2 + 22r1i + 22rU1i +
22r2i +22rU2i +2

√
(22rU1i − 1)(22rU2i − 1)−4. We formulate

the problem only in terms of rates as,

max
r1,r2,rU1,rU2

N∑
i=1

µ1r1i + µ2r2i

s.t.
k∑
i=1

22r1i + 22rU1i ≤
k∑
i=1

(E1i + 2), ∀k, (12)

k∑
i=1

22r2i + 22rU2i ≤
k∑
i=1

(E2i + 2), ∀k, (13)

k∑
i=1

r1i ≤
k∑
i=1

d1i, ∀k, (14)

k∑
i=1

r2i ≤
k∑
i=1

d2i, ∀k, (15)

r1i + r2i ≤ f(Si/σ
2), ∀i. (16)

The problem in (16) is a non-convex optimization problem due
to the last set of constraints r1i+ r2i ≤ f(Si/σ

2), ∀i. We use
the successive convex approximation technique to approximate
the constraints in (16) as explained in [27]. We use the first
order Taylor expansion to the function f(Si/σ

2) around the
point Rn , (rn1 , r

n
2 , r

n
U1, r

n
U2) for iteration n+ 1, by

f(Si/σ
2) 'Cni + αn1i(r1i − rn1i) + αn2i(r2i − rn2i)



+ βn1i(rU1i − rnU1i) + βn2i(rU2i − rnU2i), (17)

where the values of the coefficients are given in Appendix A
and depend only on the solution of the previous iteration n.
With this approximation the problem in (16) becomes

max
r1,r2,rU1,rU2

N∑
i=1

µ1r1i + µ2r2i

s.t. (12)-(15)

(1− αn1i)r1i + (1− αn2i)r2i − βk1irU1i

− βn2irU2i ≤ Dn
i , ∀i, (18)

where Dn
i , Cni − αn1ir

n
1i − αn2ir

n
2i − βn1ir

n
U1i − βn2ir

n
U2i

and is a constant for this optimization problem. At iteration
n + 1, we evaluate the coefficients in (17) using the optimal
rate allocations at iteration n, we solve the problem in (18)
using these coefficients and we update the initial point as
Rn+1 = R∗(n) where R∗(n) denotes the optimal values of
the variables when (18) is solved. Now we show that this
procedure stops at an optimal solution to the problem in (16).
To achieve this, we first show that strong duality holds for
(16). The proof is given in Appendix B.

Lemma 2 Strong duality holds for the problem in (16).

Now we show that the procedure converges to an optimal
solution and the proof is given in Appendix C.

Lemma 3 Rn → R∗ where R∗ solves (16).

In the next section, we solve the problem in (18) for fixed n.

IV. SOLUTION FOR APPROXIMATE PROBLEMS

In this section, we solve the approximate problems for
iteration n + 1. For notational convenience we drop the
superscript n from the last constraints in (18) noting that they
depend only on the solution of the problem at the previous
iteration n. Therefore the coefficients αn1i, α

n
2i, β

n
1i, β

n
2i are

essentially constants for the problem at step n+ 1.

Lemma 4 There exists an optimal solution in which (1 −
α1i)r1i + (1− α2i)r2i − β1irU1i − β2irU2i = Di, ∀i.

Proof: Assume there exists a profile where (1−α1i)r1i+(1−
α2i)r2i − β1irU1i − β2irU2i < Di for some slot i. Then we
can decrease, rU1i or rU2i to achieve equality. �

Invoking Lemma 4, the problem becomes,

max
r1,r2,rU1,rU2

N∑
i=1

µ1r1i + µ2r2i

s.t. (12)-(15)
(1− α1i)r1i + (1− α2i)r2i − β1irU1i

− β2irU2i = Di, ∀i. (19)

We solve the problem in (19) using a primal decomposition.
We add a new optimization variable t ∈ RN and equivalently
formulate (19) as follows:

max
r1,r2,rU1,rU2,t

N∑
i=1

µ1r1i + µ2r2i

s.t. (12)-(15)
(1− α1i)r1i − β1irU1i = Di + ti, (20)
(1− α2i)r2i − β2irU2i = −ti, ∀i. (21)

Let us define the function z(t) which is a maximization over
(r1, r2, rU1, rU2) for fixed t:

z(t) = max
r1,r2,rU1,rU2

N∑
i=1

µ1r1i + µ2r2i

s.t. (12)-(15),(20),(21). (22)

Then the original problem in (19) is equivalent to

max
t
z(t). (23)

We solve (23) by separately solving the outer and inner
maximization problems.

A. Inner Maximization

In this section, we focus on the inner problem in (22) for
fixed t. Note that when t is fixed, the variables (r1, rU1) and
(r2, rU2) are decoupled and (22) can be separated into two
sub-problems. We define z1(t) and z2(t) as

z1(t) = max
r1,rU1

N∑
i=1

µ1r1i

s.t.
k∑
i=1

22r1i + 22rU1i ≤
k∑
i=1

(E1i + 2), (24)

k∑
i=1

r1i ≤
k∑
i=1

d1i, ∀k, (25)

(1− α1i)r1i − β1irU1i = Di + ti, ∀i.
(26)

z2(t) = max
r2,rU2

N∑
i=1

µ2r2i

s.t.
k∑
i=1

22r2i + 22rU2i ≤
k∑
i=1

(E2i + 2), (27)

k∑
i=1

r2i ≤
k∑
i=1

d2i, ∀k, (28)

(1− α2i)r2i − β2irU2i = −ti, ∀i. (29)

and note that z(t) = z1(t) + z2(t). First we concentrate on
solving z1. Let w1i = (1 − α1i)/β1i, v1i = 2−2(Di+ti)/β1i .
Using the equality constraints in (26) we get,

max
r1

N∑
i=1

µ1r1i



s.t.
k∑
i=1

22r1i + v1i2
2w1ir1i ≤

k∑
i=1

(E1i + 2), (30)

k∑
i=1

r1i ≤
k∑
i=1

d1i, ∀k. (31)

This is a single-user problem with data arrivals d1i, energy
arrivals E1i and a modified energy consumption function
m(r1i) = 22r1i + v1i2

2w1ir1i . In order to solve it: first, we
perform directional waterfilling on the data arrivals d1i. Sec-
ond, we perform directional waterfilling on the energy arrivals
E1i with the understanding that m′(r1i) is a generalized water
level and the quantity to be kept constant over the slots. Then,
we take the minimum of the two solutions ensuring that any
unused data or energy must be carried over to the future slots.

Now we solve z2. Let w2i = (1 − α2i)/β2i and v2i =
2ti/β2i . Using the equality constraints of (29) we get,

max
r2

N∑
i=1

µ2r2i

s.t.
k∑
i=1

22r2i + v2i2
2w2ir1i ≤

k∑
i=1

(E2i + 2), (32)

k∑
i=1

r2i ≤
k∑
i=1

d2i, ∀k. (33)

This problem is solved similarly as in the case of z1.

B. Outer Maximization

The outer maximization problem is that of finding optimal t
in (23). The equality constraints in (20) and (21) impose some
feasibility constraints on t. Then the problem is equivalent to

max
t

z(t)

s.t. z1(t), z2(t) are feasible. (34)

It can be shown that z(t) is concave in t. Solving this
problem can be performed efficiently by iterating over feasible
t such that every iteration increases the objective function, for
example, using the method described in [28, Section III.B].
Due to convexity, the convergence to an optimal solution
is guaranteed. The overall solution algorithm is given in
Algorithm 1. The solution to outer maximization problem is
in lines 2 to 16.

V. NUMERICAL RESULTS

In this section, we demonstrate that user cooperation im-
proves the achievable departure region of a MAC, under data
and energy arrival constraints. In Fig. 3 we plot the achievable
departure region of the proposed cooperative MAC model
with energy and data arrival constraints. For comparison, we
also plot the departure region of the MAC with energy and
data arrivals which was studied in [23] and the departure
region of the cooperative MAC with only energy arrivals
which was studied in [24]. For direct comparison with [24],
we use capacity and achievable rate formulas for bandlimited
Gaussian channels, that yield the capacity and achievable rates

Algorithm 1 Algorithm to solve (16)
Initialize

1: Find initial feasible R0 , (r01, r
0
2, r

0
U1, r

0
U2)

Define function to find z(t)

2: function SOLVEZ(αn1i, α
n
2i, β

n
1i, β

n
2i, D

n
i ) . Solves z

3: Set u← 0, t1 ← u, t2 ← u
4: Solve z1(u), z2(u) as explained after (31) and (33)
5: z(u)← z1(u) + z2(u)
6: for i = 1 : N do
7: t1i ← ui + ε, t2i = ui − ε
8: Solve z1(t1), z2(t1), z1(t2), z2(t2)
9: z(t1) = z1(t1) + z2(t1), z(t2) = z1(t2) + z2(t2)

10: if [z(t1) > z(u)] then u = t1
11: else if [z(t2) > z(u)] then u = t2
12: end if
13: end for
14: Go to (6) until convergence
15: return last found optimal (r1, r2, rU1, rU2)
16: end function

Main Algorithm

17: repeat
18: Find Ani , α

n
1i, α

n
2i, β

n
1i, β

n
2i, C

n
i from (35) - (40)

19: Dn
i ← Cni − αn1irn1i − αn2irn2i − βn1irnU1i − βn2irnU2i

20: Rn+1 ← SOLVEZ(αn1i, α
n
2i, β

n
1i, β

n
2i, D

n
i )

21: n← n+ 1
22: until convergence

in bits per second. We select the bandwidth and the equivalent
noise variance (obtained by taking into account the bandwidth,
noise spectral density and path loss) as in [24]. The Gaussian
noise variances on the direct links are therefore selected as
10−2 W and the transmission bandwidth is selected as 1
MHz. For the cooperative MAC only, the inter-user channels
are assumed to be AWGN channels with variance 5 × 10−3

W, which translates to inter-user links having a 3-dB SNR
advantage over the direct links.

The energy and data arrivals are chosen as E1 =
[5, 0, 5, 0, 0, 0, 0, 10, 0, 0] mJ, E2 = [5, 0, 0, 0, 0, 10, 0, 0, 5, 0]
mJ, d1 = [1.4, 1.4, 0, 1.4, 0, 7, 14, 0, 14, 0]×10−1 Mbits, d2 =
[7, 2.8, 0, 14, 0, 0, 1.4, 2.8, 0, 0]×10−1 Mbits. The transmission
deadline is chosen as 10 seconds. The existence of data arrivals
in the cooperative MAC has an impact on the departure region
and this effect is more apparent in the single user rates. We also
observe that cooperation has enhanced the departure region
when we compare the ordinary MAC and cooperative MAC
both with data and energy arrrivals.

Additionally, we plot the data departure curves for both
users in Fig. 2 in the case of sum rate maximization, i.e.,
µ1 = µ2 = 1. We see that the possibility of user cooperation
allows for higher data rates to be sustained using the same
amount of energy.



0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
2
 (Mbits)

B
1
 (

M
b
it
s
)

 

 

Regular Mac with Data

CMAC with no data

CMAC with data

Fig. 2. Departure regions of cooperative MAC with and without data arrivals
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VI. CONCLUSION

We considered a cooperative MAC with intermittent data
and energy arrivals. We found the optimal offline power and
rate allocation policy that maximize the departure region. We
first showed that there exists an optimal policy, in which the
single user rate constraints in each time slot are tight. Then,
we formulated the departure region maximization problem as
a weighted sum rate maximization in terms of rates only.
Next, we proposed a sequential convex approximation method
and showed that it converges to the optimal solution. Finally,
we solved the approximate problems with an inner outer
decomposition method. Numerically, we observed that higher
data rates can be sustained using the same amount of energy.

APPENDIX A
COEFFICIENTS OF (17)

By differentiating f(Si/σ
2) the coefficients are,

Ani =22r
n
1i + 22r

n
U1i + 22r

n
2i + 22r

n
U2i

+ 2
√

(22r
n
U1i − 1)(22r

n
U2i − 1)− 4, (35)

αn1i ,
∂g

∂r1i

∣∣∣
rn1i

=
0.5

1 +Ani /σ
2

22r
n
1i , (36)

αn2i ,
∂g

∂r2i

∣∣∣
rn2i

=
0.5

1 +Ani /σ
2

22r
n
2i , (37)

βn1i ,
∂g

∂rU1i

∣∣∣
rnU1i

=
0.5

1 +Ani /σ
2

22r
n
U1i

(
1 +

√
22r

n
U2i − 1√

22r
n
U1i − 1

)
,

(38)

βn2i ,
∂g

∂rU2i

∣∣∣
rnU2i

=
0.5

1 +Ani /σ
2

22r
n
U2i

(
1 +

√
22r

n
U1i − 1√

22r
n
U2i − 1

)
,

(39)

Cni =
1

2
log2

(
1 +

Ani
σ2

)
. (40)
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Fig. 3. Data departure curves for both users in the case of µ1 = µ2 = 1.

APPENDIX B
PROOF OF LEMMA 2

We will prove a more general result. Assume we have two
optimization problems (P1) and (P2) as given below.

(P1): min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m. (41)
(P2): min

y
f0(h(y))

s.t. fi(h(y)) ≤ 0, i = 1, . . . , k,

fi(h(y)) = 0, i = k + 1, . . . ,m. (42)

Here {fi}mi=1 are convex, differentiable functions and h(y)
is a collection of one-to-one, invertible functions. (P2) is
obtained from (P1) by enforcing some inequality constraints
with equality and by a change of variables, x = h(y). Since
(P1) is a convex optimization problem, strong duality holds
[29]. We denote the primal optimal values of problems (P1)
and (P2) as p∗1, p

∗
2 respectively. We show the following lemma.

Lemma 5 If p∗1 = p∗2, then strong duality also holds for (P2).

Proof: The dual function and the Lagrange dual problem for
(P1) are,

g1(λ) = min
x

[f0(x) +

m∑
i=1

λifi(x)], (43)

d∗1 = max
λ≥0

g1(λ), (44)

where λ are the Lagrange multipliers corresponding to the
inequality constraints in (41) and d∗1 denotes the optimal dual
value. Similarly for (P2),

g2(β,γ) = min
y

[f0(h(y)) +

k∑
i=1

βifi(h(y))

+

m∑
i=k+1

γifi(h(y))], (45)



d∗2 = max
β≥0,γ

g2(β,γ), (46)

where βi and γi correspond to the inequality and equality
constraints in (42), respectively. We do not have the constraints
γ ≥ 0 since γ corresponds to equality constraints. Since h is
invertible, we let x = h−1(y) and rewrite (45) as,

g2(β,γ) = min
x

[f0(x) +

k∑
i=1

βifi(x) +

m∑
i=k+1

γifi(x)]. (47)

Now we have,

d∗2 ≥ max
(β,γ)≥0

g2(β,γ) = max
λ≥0

g2(λ) = max
λ≥0

g1(λ) = d∗1,

(48)

where the first inequality follows from the fact that γ ≥ 0
yields to a more restricted feasible set, the first equality is a
rewriting of the problem in terms of variable λ, the second
equality follows from comparing (45) to (43). Furthermore,

d∗2 ≥ d∗1 = p∗1 = p∗2, d∗2 ≤ p∗2, (49)

where d∗1 = p∗1 follows from strong duality of (P1) and p∗1 =
p∗2 from assumption and d∗2 ≤ p∗2 follows from weak duality
of (P2) which always holds irrespective of convexity of the
problem. Then we have d∗2 = p∗2 and strong duality holds. �

The problem in (16) is obtained from (9) similar to how (P2)
is obtained from (P1) without changing the primal objective
value and the problem in (9) is a convex problem. Therefore
the problem in (16) has strong duality.

APPENDIX C
PROOF OF LEMMA 3

In [27] a non-convex problem is solved by a convex
approximation method, in which non-convex constraints g(x)
are approximated around point xn by a differentiable convex
function ḡ(x,xn). Each function ḡ(x,xn) must satisfy:
• g(x) ≤ ḡ(x,xn) for all feasible x,
• g(x) = g(xn,xn),
• ∂g(xn)/∂xn = ∂ḡ(xn,xn)/∂xn.

In our problem, the non-convex constraint function g is given
as r1i + r2i − f(Si/σ

2) ≤ 0. The last two properties are sat-
isfied when ḡ is taken as the Taylor expansion of the function
g. The function f(Si/σ

2) is a convex function since it is of
the form log(

∑
2x). Then, g is concave. The first property

is satisfied since linear approximations are over-estimators for
concave functions. By [27, Theorem 1], Rn converges to R∗

where R∗ is a Kuhn-Tucker point of the problem in (16).
From Lemma 2, strong duality holds and therefore Kuhn-
Tucker conditions are both necessary and sufficient for global
optimality. Therefore R∗ is a global optimal solution to (16).
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