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Abstract

We characterize the optimum power control policies that
achieve arbitrary rate tuples on the boundary of the capacity
region of a power controlled, code division multiple access
(CDMA) system in a fading channel. We propose a “generalized”
waterfilling approach, and provide an iterative algorithm that
solves for the optimum power allocation policy, for a given
arbitrary rate tuple on the boundary of the capacity region.

I. INTRODUCTION

The capacity limits of communication systems subject to
fading has recently drawn significant attention, and in the last
decade, several results regarding the information theoretic capac-
ities of many channel models have been reported. The partic-
ularly interesting types of channel models are those where the
transmitter(s) and receiver(s) are able to track the variations in
the channel, and therefore are capable of allocating the system
resources and adapting their coding and decoding strategies to
the variations in the channel, in order to improve the capacity. In
this paper, we consider the uplink of a fading CDMA channel,
and the resources we allocate are the available transmit powers.

The problem of power allocation in order to maximize the
information theoretic capacity in the presence of fading was first
studied for a single user channel in [1], where it was shown that,
subject to an average power constraint and under the ergodicity
assumption on the fading process, the ergodic capacity of the
channel is maximized by allocating the total power of the user
according to a waterfilling strategy, where the user “waterfills”
its power in time, over the inverse of the channel states.

For multiple access channels, the capacity region is defined
as the set of achievable rate tuples. For a scalar multiple access
channel (MAC), [2] solved the power allocation problem with the
goal of achieving a special rate tuple on the capacity region, the
one that achieves the ergodic sum capacity. There, it was shown
that in order to achieve the sum capacity, only the strongest user
may transmit at any given time, and the optimun power control
policy is again waterfilling, over disjoint sets of channel states.

The entire capacity region, and the corresponding power con-
trol policies for the scalar MAC were characterized in [3]. The
capacity region is shown to be a union of the capacity regions
(polymatroids) achievable by all valid power allocation policies,
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i.e., the policies that satisfy the average power constraints. The
optimal power allocation policy for each rate tuple on the capacity
region is obtained by a greedy algorithm, which compares certain
marginal utility functions, and makes use of the generalized
symmetry properties of the rank function of the polymatroid
corresponding to the rate tuple in question.

The capacity region for a non-fading vector MAC, where
the total average power of the components of the transmitted
vectors are constrained, is given by [4]. There, also an itera-
tive waterfilling algorithm which allocates the powers over the
components of the transmitted vector in order to maximize the
sum capacity was proposed. The power allocation problem for
a fading vector MAC was considered in [5], again with the aim
of maximizing the sum capacity. It was shown that, the optimal
power allocation in the fading case as well satisfies the Karush-
Kuhn-Tucker (KKT) conditions, which can also be interpreted as
simultaneous waterfilling, where the water levels are matrices.

In [6], the capacity region of a power controlled fading CDMA
channel with perfect channel state information at the transmitters
and the receiver was obtained. Also, the power allocation policy
that achieves the sum capacity point on the capacity region
boundary was found, and it was shown that the optimal power
allocation policy is a simultaneous waterfilling of powers over the
inverse of the SIRs the users would obtain if they transmitted with
unit powers. It was also shown that, a one-user-at-a-time iterative
waterfilling algorithm can be used to solve these simultaneous
waterfilling conditions, and therefore to obtain the optimal power
distributions of all users over all fading states.

In this paper, we consider the problem of solving for the
power allocation policy that achieves an arbitrary rate tuple on
the capacity region of fading CDMA. As in [3] and [4], this
problem is equivalent to a maximization of a weighted sum
of rates, subject to average power constraints. We make use of
the concavity of the objective function and the convexity of the
constraints, and write the KKT conditions at each fading state,
for a given set of weights. We then develop a “generalized”
waterfilling approach, where we gradually pour some power at
some or all channel states until all the KKT conditions are
satisfied. Using this approach, we propose a one-user-at-a-time
algorithm similar to that in [6], [7], and show that it converges
to the optimum power allocation for any given point on the
boundary of the capacity region. This algorithm, while providing
a systematic solution to the capacity achieving power allocation
problem in fading CDMA, also provides as a special case, an



intuitive approach to the power allocation for scalar MAC in [3].

II. PROBLEM DEFINITION

We consider a symbol synchronous CDMA system with pro-
cessing gain N , where all K users transmit to a single receiver
site. In the presence of fading and AWGN, the received signal is
given by [8],

r =

K
∑

i=1

√

pihixisi + n (1)

where, for user i, xi denotes the information symbol with
E[x2i ] = 1, si = [si1, · · · , siN ]

> denotes the unit energy signature
sequence,

√
hi denotes the random and continuously distributed

channel gain, and pi denotes the transmit power; n is a zero-mean
Gaussian random vector with covariance σ2IN . We assume that
the receiver and all of the transmitters have perfect knowledge
of the channel states of all users represented as a vector h =
[h1, · · · , hK ]

>, and the components of h are independent. We
further assume that although the fading is slow enough to ensure
constant channel gain in a symbol interval, it is fast enough so
that within the transmission time of a block of symbols the long
term ergodic properties of the fading process can be observed
[9].

For the CDMA system given by (1), let the transmitters be
able to choose their powers as a function of the channel states,
subject to the average power constraints Eh[pi(h)] ≤ p̄i. The
following theorem from [6] gives the set of long term achievable
rates, i.e., the capacity region, for fading CDMA.

Theorem 1: ([6]) The capacity region of a fading CDMA
channel under additive white Gaussian noise, where users have
perfect channel state information (CSI) and allocate their powers
as a function of the CSI subject to average power constraints
Eh[pi(h)] ≤ p̄i is given by,

⋃

{p(h): Eh[pi(h)]≤p̄i, ∀i}
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,

∀Γ ⊂ {1, · · · ,K}
}

(2)

Figure 1 illustrates a typical capacity region for some fixed
signature sequences s1 and s2 in a two user setting. Each of
the pentagons corresponds to a valid power allocation policy. We
have shown in [6] that the capacity region for fading CDMA is
in general not strictly convex, and there may be a flat portion
on the boundary of the capacity region, which coincides with
the dominant face of the capacity region corresponding to the
sum capacity maximizing power control policy. Now, note that,
for any given point (R∗1, R

∗
2) on the boundary of the capacity

region, one can find non-negative numbers µ1 and µ2, such that
the line µ1R1 + µ2R2 = C is tangent to the capacity region for
some C = C∗(µ1, µ2), and in fact C∗(µ1, µ2) is the maximum
achievable value of µ1R1 + µ2R2. Therefore, the problem of
finding the power control policy that corresponds to the rate pair

R 1µ 1 µ R2 2 =C+ *

R 2

R 1

(R )2R1,
* *

Fig. 1. Sample two user capacity region.

(R∗1, R
∗
2) is equivalent to maximizing µ1R1 + µ2R2 subject to

the average power constraints. Here, µis can be interpreted as the
priorities assigned to each user. The desired rate pair (R∗1, R

∗
2)

is either the corner of one of the pentagons specified by a power
allocation policy as in (2), or it lies on one of the flat portions.
If it is a corner, its coordinates can be written as a function of
the power allocation policy using (2), and the maximization can
be carried out. The case where (R∗1, R

∗
2) lies on one of the flat

portions correspond to either the rather easier case where we want
to maximize the sum capacity, which is solved in [6], [7], or the
trivial case where one of the µis is zero, and the problem reduces
to a single user problem.

Having introduced the reasoning in the simple two user case,
we now define our problem in the general K user case. Without
loss of generality, assume µK > · · · > µ1. Then, the optimum
power allocation policy for {µi}Ki=1 is the solution to the maxi-
mization problem,

max
p(h)

1

2
Eh

[

µ1 log
∣

∣IN + σ−2SD(h)S>
∣

∣

+

K
∑

i=2

(µi − µi−1) log
∣

∣IN + σ−2SEi
DEi

(h)S>Ei

∣

∣

]

s.t. Eh[pi(h)] ≤ p̄i, i = 1, · · · ,K
pi(h) ≥ 0, ∀ h, i = 1, · · · ,K (3)

where S = [s1 · · · sK ], D(h) = diag[p1(h)h1, · · · , pK(h)hK ],
Ei = {i, · · · ,K} and p(h) = [p1(h), · · · pK(h)]. Here, DEi

and
SEi

refer to sub-matrices containing only the received powers and
signature sequences of the users in the subset Ei. Note that, this
is the fading CDMA version of equation (3) in [4], and is similar
to equation (17) for the scalar case in [3].

III. GENERALIZED ITERATIVE WATERFILLING

Let us denote the objective function in (3) by
Cµ(p1(h), · · · , pK(h)), where µ = [µ1, · · · , µK ]. In order
to solve (3), we first note that the objective function is concave



in the power vector p(h), and further, it is strictly concave
in the individual components pi(h) of p(h). The constraint
set is convex (in fact, affine). Therefore, the solution to the
maximization problem in (3) should satisfy the extended KKT
conditions, which can be shown to reduce to,

k
∑

i=1

µi − µi−1
aki(h) + pk(h)

≤ λk, ∀ h, k = 1, · · · ,K (4)

where, we have defined µ0 , 0 for notational convenience. Here,
aki(h) for i ≤ k ≤ K is given by,

aki(h) =
1

σ−2hks>k

(

IN + σ−2
∑K

j=i,j 6=k pj(h)hjsjs
>
j

)−1

sk

(5)
and denotes the inverse of the SIR user k would obtain at the
output of an MMSE filter if it transmitted with unit power, when
users i, i+ 1, · · · ,K are active. The condition in (4) is satisfied
with equality at some h, if pk(h) > 0. Since the optimum
power allocation policy for a given µ should simultaneously
satisfy all the conditions given by (4), and the optimum power
of each user k at each fading state h depends on the power
allocations of all other users at that state through aki(h), it
is hard to analytically solve for the optimum policy from the
KKT conditions. Therefore, to proceed, we devise an iterative
algorithm. Consider optimizing the power of only user k over all
channel states, given the powers of all other users at all channel
states,

pn+1
k = argmax

pk

Cµ
(

pn+1
1 , · · · , pn+1

k−1 , pk, p
n
k+1 · · · , pnK

)

= argmax
pk

Ck
µ (pk) (6)

where Ck
µ(pk) denotes the first k terms that contain contributions

from user k to Cµ(p(h)).

The convergence of such an algorithm has been proved for
the case of sum capacity in [6], [7] for fading channels, and in
[4] for non-fading channels. The objective function here satisfies
the same concavity and strict concavity properties as the sum
capacity, and the constraint set is the same as in [6], [7]; therefore
the proof in [6], [7] immediately applies to the case of unequal
µis here, and the update (6) converges to the optimal power
allocation. Thus, it is sufficient to consider separately finding
the solution pk(h) that satisfies the kth KKT condition in (4) for
each user k, while keeping the powers of all other users j 6= k
as fixed and known quantities.

Let us concentrate on user k, and fix pj(h), j 6= k. It can
be shown that, the solution to (6) subject to the average power
constraint on pk(h) should satisfy the KKT condition for the
single user problem,

k
∑

i=1

µi − µi−1
aki(h) + pk(h)

≤ λ̃k, ∀ h (7)

A side remark here: λ̃k is in general different from the Lagrange
multiplier λk in (4), since the powers we have fixed for the

other users need not be the optimal powers. Eventually, since the
iterative algorithm converges to the optimal powers, we know
that λ̃k will converge to λk.

We will next argue how this condition can be interpreted as a
“generalized” waterfilling. First assume no power has yet been
allocated to any channel state. Define the inverse of the left hand
side of (7) evaluated at pk(h) = 0 for all h by,

bk(h) =

(

k
∑

i=1

µi − µi−1
aki(h)

)−1

(8)

Then, sort bk(h) over all channel states h in increasing order.
Since user k has to satisfy its average power constraint, it has
to put some power to a non-zero probability subset, say Ω, of
all possible channel states. At the channel states where user
k transmits with positive power, (7) needs to be satisfied with
equality. Let user k start pouring some of its available power to
the state which gives the lowest bk(h), say h′. Next, pick another
state h′′, such that bk(h′) < bk(h

′′). User k starts transmitting
at h′′ only if (i) it has already poured some powers qk(h) to all
states h such that bk(h) < bk(h

′′), (ii) it still has some power
left to allocate, and (iii) the already allocated powers satisfy

k
∑

i=1

µi − µi−1
aki(h) + qk(h)

= b−1k (h′′), ∀ h : bk(h) ≤ bk(h
′′) (9)

Before going any further, using the current construction, let us
revisit the sum capacity case in [6], [7] where µi, i = 1, · · · ,K,
are all equal to 1. In this case, from (8), bk(h) = ak1(h), and
it can be easily seen that the described procedure produces the
ordinary waterfilling solution; user k will pour its power over
ak1(h) = bk(h), until all the available power is used. The optimal
power value at h is the difference between the water level 1/λ̃k
and the base level bk(h), whenever the difference is positive; it
is zero otherwise, i.e.,

pk(h) =

(

1

λ̃k
− bk(h)

)+

(10)

The main subtlety in solving for the optimal powers in the
arbitrary µis case is that, there are more than one terms that
involve pk(h) on the left hand side of (7), and thus the optimal
pk(h) is no longer given by a nice expression such as (10),
but is rather the solution to a polynomial equation. Therefore,
the optimal power levels lose their waterfilling interpretation.
However, we can still see the procedure described here as a type
of waterfilling, as it gradually equalizes the base levels bk(h),
and solves for the power levels required for such equalization,
hence the name “generalized” waterfilling.

Generalized waterfilling yields the optimum power allocation
because of the fact that by construction, the KKT conditions are
satisfied when all average power is used. To see this, let us denote
the left hand side of (9) by L(h, qk(h)). We keep increasing
bk(h

′′) on the right hand side of (9) gradually. Letting pk(h) =
qk(h) when the solution qk(h) obtained from (9) satisfies the
average power constraints, and taking λ̃k , L(h, pk(h)), we see
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Fig. 2. Illustration of the generalized waterfilling.

that the solution pk(h) satisfies the KKT conditions and it is
optimal.

In order to better visualize how the generalized waterfilling
is performed, we consider a simple example with K = 2 and
with discrete joint channel states hi, i = 1, · · · ,M . Without loss
of generality, let us assume bk(h

1) < · · · < bk(h
M ). Figure 2

shows the generalized waterfilling procedure. The ordered values
bk(h

i) are illustrated in Figure 2(a). First, using (9), we solve
for the amount of power qk(h1) that will level L(h1, qk(h

1)) and
bk(h

2), so that the water level is bk(h2), as shown in Figure 2(b).
It can be easily shown that qk(h

1) is the only non-negative
solution to a kth order polynomial equation, obtained from (9).
In this particular example, the available average power is not yet
completely used in this first step, so we repeat the same procedure
at both h1 and h2, i.e., we solve for qk(h1) and qk(h

2) that will
level L(h1, qk(h

1)), L(h2, qk(h
2)) and bk(h

3) (see Figure 2(c)).
We continue this procedure until we see that although the water
levels can be made equal at bk(ht−1) while satisfying the average
power constraint, it is not possible to equalize the water levels

at bk(ht), since the available average power falls short of the
required average power that is needed for such equalization. At
this point, we know that the final water level, i.e., the true value
of 1/λ̃k that will satisfy the KKT conditions together with qk(hi)
obtained from (9) should lie between bk(h

t−1) and bk(h
t), and

we can find it by searching between these two values until the
qk(h

i), i = 1, · · · , t − 1, satisfy the average power constraint
with equality. Figure 2(d) illustrates this last step, and the final
value of λ̃k that satisfies the KKT conditions.

Note that, by letting µ1 = · · · = µK , we recover the traditional
waterfilling solution in [6], [7], since only the first term survives
in the KKT conditions. On the other hand, if we let si = 1 for
i = 1, · · · ,K, the generalized waterfilling algorithm solves the
resource allocation problem in [3] for scalar MAC.

IV. SIMULATION RESULTS

In this section, we present some simulation results for the
generalized iterative waterfilling algorithm. In our simulations,
we pick the number of users K = 2, so that our results such as
the capacity regions and the optimum power allocations can be
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(a) Power allocation for user 1, µ1 = µ2 = 1.
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(b) Power allocation for user 1, µ1 = 1, µ2 = 2.
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(c) Power allocation for user 1, µ1 = 1, µ2 = 10.
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(d) Power allocation for user 2, µ1 = µ2 = 1.
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(e) Power allocation for user 2, µ1 = 1, µ2 = 2.
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(f) Power allocation for user 2, µ1 = 1, µ2 = 10.

Fig. 3. Power distributions for different values of priorities.

easily visualized. The channel states h1 and h2 are chosen to be
independent uniform random variables, each taking values from
the discrete set {0.2:0.2:2}. The processing gain is chosen to be
N = 2, the noise variance is σ2 = 1, and both users have an
average power constraint equal to 1.

First, in order to observe the effect of the priorities µi on
the optimum power allocation, we plot the optimum power
allocation policies for both users for two different sets of (µ1, µ2)
values. We fix the signature sequences of the users to be
s1 = [1/

√
2 1/

√
2]>, and s2 = [1 0]>. Figures 3(a) and

3(d) correspond to the sum capacity maximizing power control
policies, i.e., to (µ1, µ2) = (1, 1). In each figure, the height of
the surface corresponds to the power allocated to each channel
state. We see that the two users perform simultaneous waterfilling,
which was also observed in [6], [7]. Here, each of the users tend
to transmit with less power over the channel states where the
other user is stronger, and due to the symmetry of the problem,
the power allocation policies are symmetric. When we choose
unequal priorities (µ1, µ2) = (1, 2), we observe in Figures 3(b)
and 3(e) that the power allocation for user 1 does not change
significantly, but user 2 pours more power to channel states where
it transmitted with considerably less power in the symmetric

priorities case. If we increase µ2 even further, and solve for
the case when (µ1, µ2) = (1, 10), we see in Figure 3(f) that
the power allocation policy of user 2 converges nearly to single
user waterfilling. Since the priority of user 1 is much less than
that of user 2, user 2, while trying to maximize the weighted
sum of rates, acts as if it is alone in the system in allocating its
power. The power allocation of user 1, given in Figure 3(c), is
not significantly different from the previous two cases.

In Figure 4, we give the capacity region of the fading CDMA
channel, for different values of correlations between the signature
sequences. The regions are formed by finding the optimal power
allocation policies for a large set of (µ1, µ2) values, and then
by using these allocation policies to compute the correspond-
ing (R1, R2) pairs. The case when the correlation is ρ = 1
corresponds to the identical signature sequences case, in which
case the boundary of the capacity region is strictly convex, and
each point on the surface can be achieved by a power control
policy, without timesharing. Note that, this setting also covers
the scalar MAC case in [3], and the properties derived in [3]
for the capacity region are observed here. When we decrease the
correlation between the sequences, we begin to observe a flat
portion on the capacity region, which agrees with the findings
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Fig. 4. Capacity region of a two user fading CDMA channel for several
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of [6]. As we further decrease the correlation, eventually the
sequences become orthogonal and the capacity region becomes
the rectangular region whose boundaries are single user limits,
as expected.
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Fig. 5. Convergence of generalized iterative waterfilling.

Finally, in Figure 5, we show an example of the convergence
of the generalized iterative waterfilling algorithm for the simple

system considered here; the powers converge after only three
iterations, and the optimum weighted capacity value is almost
attained after one round of iterations.

V. CONCLUSIONS

We have characterized the power allocation policies that
achieve arbitrary rate tuples on the boundary of the capacity
region of a fading CDMA channel. The optimal power allocation
policy for a given set of priorities µi is the joint solution to
the extended KKT conditions for all users. Since the KKT
inequalities appear difficult to solve analytically, we have pro-
vided a one-user-at-a-time iterative power allocation algorithm
that converges to the optimum solution. We showed that, each
iteration of this algorithm corresponds to solving for the power
levels of the user of interest at all fading states, so that the power
allocation satisfies the single-user KKT conditions. We have also
provided a “generalized” waterfilling interpretation for the power
allocation procedure as it operates by gradually equating the
levels of “water” poured on top of certain base levels, which
are functions of the channel states, power levels of other users,
and the priorities µi.
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