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The proliferation of services involving the transmission of high rate data traffic

over wireless channels makes it essential to overcome the detrimental effects of the

wireless medium, such as fading and multiuser interference. This thesis is devoted to

obtaining optimal resource allocation policies which exploit the transmitters’ and re-

ceiver’s knowledge about the fading to the network’s advantage, to attain information

theoretic capacity limits of fading wireless channels.

The major focus of the thesis is on capacity results for fading code division multiple

access (CDMA) channels, which have proved to be a robust way of combatting the

multiuser interference in practical wireless networks. For these channels, we obtain

the capacity region achievable with power control, as well as the power control policies

that achieve the desired rate points on the capacity region. We provide practical one-

user-at-a-time iterative algorithms to compute the optimal power distributions as

functions of the fading. For the special case of sum capacity, some properties of the

optimal policy, such as the number of simultaneously transmitting users, are obtained.



We also investigate the effects of limited feedback on the capacity, and demonstrate

that very coarse channel state information (CSI) is sufficient to benefit from power

control as a means of increasing the capacity.

The selection of the signature sequences also plays an important role in deter-

mining the capacity of CDMA systems. This thesis addresses the problem of jointly

optimizing the signature sequences and power levels to maximize the sum capacity.

The resulting policies are shown to be simple, consisting of orthogonal transmissions

in time or signal space, and requiring only local CSI. We also provide an iterative

way of updating the joint resource allocation policy, and extend our results to asyn-

chronous, and multi-antenna CDMA systems.

Rather than treating the received signal at the transmitters as interference, it is

possible to treat it as free side information and use it for cooperation. The final part

of the thesis provides power allocation policies for a fading Gaussian multiple access

channel with user cooperation, which maximize the rates achievable by block Markov

superposition coding, and also simplify the coding strategy.
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with whom I shared most of my memorable moments, whether it was walking back

home at 5 a.m. after (nearly) finishing a class project, venturing out into the wilder-

ness of the D.C. area, or simply getting lost in one of our countless discussions during

iii



our frequent coffee breaks or almost automatic lunches. I would like to thank them

for the great support and encouragement they have shown during the preparation of

this thesis, as well as in all other aspects of my life. I also would like to acknowledge

Eda for volunteering to proofread many of my publications, including this thesis.

Finally, I would like to express my heartfelt gratitude to my family, who have

always been my truest supporters. I would like to thank my parents, Rezzan and

Fikret Kaya, who have shown unlimited confidence in me in every step I took during

my entire life. If it was not for them and their guidance, I would not be where I am

today. I would like to thank my beloved Başak for her love, endless support, devotion
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Chapter 1

Introduction

Increasing demand for higher rates in wireless communication systems continues to

trigger major research efforts aimed to characterize and approach the capacity limits

of such systems. The wireless medium brings along its unique challenges such as

fading and multiuser interference, which make the analysis of the communication

systems more complicated. On the other hand, the same challenging properties of

such systems are what give rise to the concepts such as diversity which play a vital

role in the design of the wireless systems.

The presence of multiple paths and reflectors in the wireless channel causes fluc-

tuations in the received signal, that may cause loss in signal quality, or even the loss

of entire communication. The channel fluctuation introduced by these phenomena is

called fading. Fading may be an important limiting factor in wireless communication

networks unless appropriate resource allocation is applied to exploit the variations in

the channel gains to the advantage of the network capacity. The capacity limits for

communication systems subject to fading have recently drawn significant attention,

and in the last decade, several results regarding the information theoretic capacity

for many channel models have been reported. The particularly interesting types of
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channel models are those where the transmitter(s) and receiver(s) are able to track

the variations in the channel, and therefore are capable of allocating the system re-

sources and adapting their coding and decoding strategies to the variations in the

channel, in order to improve the capacity.

The focus of this thesis is on resource allocation for fading channels, where the

fading is modelled as a stationary and ergodic random process, whose statistics, as

well as the instantaneous realization are known to the communicating parties. For

the most part, the development will be focused on Code Division Multiple Access

(CDMA) networks, which provide a practical powerful way to combat the other very

important limiting factor in the design of wireless systems: multiuser interference. In

the final portion of the thesis, we will take a step back and look at resource allocation

policies for wireless channels, while regarding the interference as side information,

which allows for user cooperation.

How the resource allocation needs to be performed for a specific wireless network

strongly depends on the underlying application. The initial wireless networks that

have been deployed in practice were invariably intended to carry voice traffic, and

therefore had to make sure that a desired quality of service is attained, so that the

delay sensitive voice application is not disrupted. Such networks need to find ways

to combat the possible deep attenuations caused by the fading at any given point in

time. However, recently, the growing volume of data traffic (email, files, etc.) and the

emergence of wireless networks as a medium for communicating higher rate, but less

delay sensitive traffic has made it essential to investigate resource allocation policies

that are more efficient and opportunistic.
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Consider a wireless system, in which the transmitted signals are modulated by a

randomly varying channel gain, a realization of which is illustrated in Figure 1.1. Here,

the fading is assumed to have Rayleigh statistics, which translates to exponential

power attenuation. If the signal transmission is required to be completed within a

short period of time, as seen in Figure 1.2, these statistics cannot be observed through

the course of the transmission, and the prior knowledge about the distribution of the

fading cannot be used accurately to efficiently allocate the resources. However, if the

transmission window is long enough, and more delay can be tolerated, it becomes

possible to observe the channel and cleverly schedule the transmissions in time. This

is illustrated in Figures 1.3 and 1.4, where, by allowing for a sufficiently long time

window, all the possible realizations of the fading are observed with their prescribed

probabilities, and the long term ergodic properties of the fading process are observed.

In this case, if the transmitter faces one of the deep fade levels illustrated in Figure 1.3,

knowing that the better channel states are to be realized in the future, it can save

its available resources, for example transmit power, to the upcoming favorable states.

This type of approach leads to worse instantaneous performance at some channel

states, but is expected to improve the average performance metrics, such as the

ergodic Shannon capacity. In the remainder of the thesis, this intuitive argument will

be made precise.

Power control is perhaps the most common type of resource allocation in wireless

communication systems. Following from the ideas above, in the literature, power

control for wireless systems have been treated mainly in two different contexts: one

based on meeting certain quality of service requirements, and the other based on
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Figure 1.1: Channel fluctuations for a
short transmission period.
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Figure 1.2: Relative frequency of the re-
alized fading levels.

maximizing the information theoretic capacity.

The quality-of-service based power control approaches assign transmit powers to

the users so that all users satisfy their signal-to-interference-ratio (SIR) requirements

while transmitting with the least amount of power. The SIR-based power control

assigns powers to the users with the aim of compensating for the variations in the

channel; it assigns more power to the users with bad channel states, and less power

to the users with good channel states [1–4].

The problem of power allocation in the presence of fading in order to maximize the

information theoretic capacity was first studied for a single user channel in [5], where

it was shown that, subject to an average power constraint and under the ergodicity

assumption on the fading process, the ergodic capacity of the channel is maximized

by allocating the total power of the user according to a waterfilling strategy, where

the user “waterfills” its power in time, over the inverse of the channel states.
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Figure 1.4: Relative frequency of the re-
alized fading levels, as it converges to
the underlying statistical distribution.

For multiple access channels (MAC), the capacity region is defined as the set of

achievable rate tuples. For a scalar MAC, [6] solved the power allocation problem

with the goal of achieving a special rate tuple on the capacity region, the one that

achieves ergodic sum capacity. There, it was shown that in order to achieve the sum

capacity, only the strongest user may transmit at any given time, and the power

control policy is again waterfilling, over disjoint sets of channel states.

The entire capacity region, and the corresponding power control policies for the

scalar MAC were characterized in [7]. The capacity region is shown to be a union

of the capacity regions (polymatroids) achievable by all valid power allocation poli-

cies (i.e., the policies that satisfy the average power constraints). The optimal power

allocation policy for each rate tuple on the capacity region is obtained by a greedy

algorithm, which compares certain marginal utility functions, and makes use of the

generalized symmetry properties of the rank function of the polymatroid correspond-
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ing to the rate tuple in question.

There has also been some recent work on power control for vector MACs and their

associated capacities. The capacity region for a non-fading vector MAC, where the

total average power of the components of the transmitted vectors are constrained, is

given by [8]. There, also an iterative waterfilling algorithm which allocates the powers

over the components of the transmitted vector in order to maximize the sum capacity

was proposed. The capacity region of a non-fading CDMA channel was established

in [9]. The power allocation problem for a fading vector MAC was considered in

[10], again with the aim of maximizing the sum capacity. It was shown that, the

optimal power allocation in the fading case satisfies the Karush-Kuhn-Tucker (KKT)

conditions, which can also be interpreted as simultaneous waterfilling, where the

water levels are matrices. Also, a relationship between the maximum number of

active transmit and receive antennas was given. The problem of maximizing the sum

capacity as a function of the transmit powers in a vector multiple access channel, such

as a CDMA or multiple transmit antenna system, in fading channels, is studied for the

case of large systems and random transmit vectors (signature sequences) in [11] where

a simple single-user waterfilling strategy is proposed and shown to be asymptotically

optimal.

Despite the recent results on the sum capacity of power controlled vector MACs,

the characterization of the capacity region of such channels as well as the resource

(e.g., power) allocation schemes that achieve arbitrary rate tuples on the boundary of

the capacity region remain as important open problems. A significant portion of the

proposed research is devoted to solving these aforementioned problems, for a specific
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type of vector MAC: a CDMA channel.

CDMA is a multiple accessing scheme that is widely accepted and employed in

practice, due to the many desirable features it provides for a wireless multiuser sys-

tem [12]. Therefore, the problem of characterizing the achievable rates, and the

corresponding resource allocation policies for CDMA systems is of great importance,

since the solution to this problem will provide both an upper limit on the capacity,

which will be a benchmark for the performance of practical CDMA systems, and a

method of allocating the resources, i.e., the powers, to attain that limit. Moreover,

the study of CDMA systems may give new insight to the problem of obtaining the

capacity region for the general fading vector MAC.

The methodology we follow in this thesis for characterizing the capacity region and

solving for the optimum power allocation policies is parallel to the above presented

evolution of the capacity results for the fading channels in the literature. We first

solve the problem of maximizing the sum capacity for fading CDMA, and find the

corresponding optimal power allocation policy [13,14]. We investigate the properties

of this policy as it directly relates to the optimum medium access strategies of the

users. We then attack the problem of characterizing the entire capacity region [14,15],

and we also solve for the power allocation policies that achieve arbitrary desired rate

tuples on the boundary of the capacity region [16,17]. The assumption of perfect CSI

at the transmitters, although useful in analytically characterizing the performance

limits of the CDMA network, is hard to realize in practice, due to the limitations on

the feedback channel. Therefore, we also investigate the effects of limited feedback

on the capacity region.
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The capacity region of a CDMA network also depends on the choice of the sig-

nature sequences employed by the users (see, for instance, the capacity expression

in [9]). Therefore it is possible to consider a problem where the users are allowed

to select their signature sequences, and the capacity region is obtained accordingly,

by taking into account all possible signature sequences and finding the corresponding

rate regions. In the literature, this setting is treated only for the non-fading case,

and only for the sum capacity point(s) on the capacity region boundary, where the

sum capacity of a non-fading CDMA network is optimized as a function of the sig-

nature sequences. When each user has an average power constraint, and there is

no fading in the system, [18] shows that when the number of users is less than or

equal to the processing gain, the optimal strategy is to allocate orthogonal signature

sequences to all users, and when the number of users is greater than the processing

gain, with all users having the same average power constraints, the optimal strategy

is to allocate Welch Bound Equality (WBE) [19] sequences. Reference [20] gener-

alizes [18] to arbitrary (unequal) average power constraints, and gives the optimal

signature sequence allocation as a function of the power constraints of the users.

Specifically, for the case in which the number of users is greater than the processing

gain, when a user has a relatively larger power constraint then the others, it is called

“oversized”, and such users are allocated orthogonal signature sequences; whereas the

“non-oversized” users are allocated the so-called Generalized Welch-Bound-Equality

(GWBE) sequences. In [21], the authors extend their results of [20] to colored noise.

The possibility of improving the capacity of the CDMA systems by choosing the

signature sequences motivates us to seek a jointly optimum signature sequence and
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power allocation scheme in the fading case, in order to further expand the capacity

region that is obtained by power allocation only. To this end, we solve the jointly

optimum power and signature sequence allocation policy that maximizes the sum

capacity of fading CDMA [22, 23]. We observe that, although the joint optimization

problem looks more complicated than the power optimization only problem, its solu-

tion turns out to have a much simpler and nicer structure; namely, the sum capacity

achieving signature sequences turn out to be orthogonal, and the powers follow a

single user waterfilling solution over disjoint sets of channel states. We also develop

an iterative algorithm, which iterates between the optimal sequence update and the

optimal single user power update, for jointly optimizing the signature sequences and

the powers. We prove the convergence of this algorithm to the optimum resource

allocation.

We extend the solution for jointly optimal power and signature sequence opti-

mization problem for synchronous CDMA to an asynchronous CDMA system. We

note that the optimal power allocation policy does not change, and the conditions on

the signature sequences are modified as in [24] so as to preserve orthogonality in the

asynchronous case.

Another interesting and very active line of research regarding the capacity of

wireless systems is on multiple input multiple output (MIMO) wireless channels. For

single user MIMO channels, it was shown in [25,26] that the spatial diversity provided

by multiple antennas both at the transmitters and the receivers provide a significant

improvement in the channel capacity. Inspired by this work, there have been many

efforts to quantify the capacity limits of several MIMO systems, including multiuser
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systems. A comprehensive summary of the results on the capacity of MIMO channels,

as well as a list of references and some open problems on this topic can be found in [27].

Motivated by these promising results for MIMO channels, we also address the

sum capacity maximization problem for the uplink of fading CDMA which employs

multiple antennas at the receiver. Such a system can be considered as an artificial

MIMO channel, since each user sends its information symbol by spreading its power

over different dimensions, but each of these dimensions experience the same fading

level, as opposed to a multi-antenna system. Yet, as for the single antenna system,

the joint signature sequence and power allocation provides possibility to choose the

transmit power in each signalling direction, thereby making it possible to achieve

spatial diversity, which increases the capacity. We provide an iterative algorithm,

similar in spirit to our algorithms in the single antenna case, to improve the sum

capacity of the multi-antenna CDMA system. This algorithm iterates over the users,

and also for each user, it iterates between the best single user power update for

given sequences and the eigen-update for that user’s sequence for given powers. We

demonstrate by simulations that this algorithm attains significant capacity gains for

the multi-antenna system.

Today’s multiuser communication systems are designed to avoid the multiuser

interference inherently caused by the medium. There are many multiple accessing

techniques, of which CDMA is a popular one, that simply try to minimize the effect

of the additive nature of the signals from multiple users propagating in the air. These

policies however, fail to exploit a very important property of the wireless medium: free

overheard information. In the last part of the thesis, we turn our attention to systems
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in which the transmitters take on a more active role in the communication: they

cooperate, by decoding messages from other users and employing coding and decoding

strategies that yield better rates for all participating users. The channel models in

which the transmitters have some level of access to the channel’s output(s) were

investigated in the early 1980s, and many information theoretic results on achievable

rates or capacity regions of variations of such channels were obtained [28–32].

More recently, [33] applied some of these results, mainly the ones regarding achiev-

able rates for MACs with generalized feedback [32], to the Gaussian MAC with co-

operating encoders. It was shown that, the rates achievable by what is called block

Markov superposition coding improve significantly on the traditional MAC capacity

region. These results however, although obtained in a fading setting, do not address

the possibility of allocation the resources jointly optimally with user cooperation. In

the final portion of the thesis, we consider the problem of finding the power control

polices that are optimal in conjunction with the block Markov superposition coding.

We show that, power control significantly simplifies the original block Markov super-

position coding, by eliminating the need to transmit some of the components of the

codewords, depending on the realization of the channel states. This also provides

nice structural properties for the objective function such as concavity, which would

be otherwise absent. We use sub-gradient methods to find the optimal solutions to

the simplified power optimization problem, and obtain the resulting improved rate

regions.

The remainder of this thesis is organized as follows. In Chapter 2 [13, 14], we

introduce the CDMA system model and we find the optimum power allocation policies

11



that maximize the sum capacity of a fading CDMA channel, as well as the properties

of these policies and their implications in terms of medium accessing. We also obtain

an iterative waterfilling algorithm to solve for the optimal power levels. In Chapter

3 [14–17], we attack the more general problem of finding the entire capacity region

for fading CDMA, and power control policies that achieve arbitrary rate tuples on

the capacity region boundary. The power levels are obtained through a generalized

iterative waterfilling algorithm. We provide some structural properties of the capacity

region, such as its non-strict convexity. We then relax the somewhat impractical

assumption of perfect CSI and investigate the effects of limited feedback. Chapter

4 [22,23] broadens the sum capacity optimization problem by also including signature

sequences as design variables, and we obtain the jointly optimum signature sequences

and power levels as a function of the channel states. We propose an algorithm that

iterates between the sequences and the powers, and converges to the optimal solution.

We extend our results and methods to asynchronous CDMA and systems equipped

with multiple receive antennas. In Chapter 5 [34], we solve the optimum power

allocation problem for fading Gaussian MAC with user cooperation, and show that

the coding scheme is simplified by resource allocation, and the achievable rates are

significantly improved. Some concluding remarks are provided in Chapter 6.
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Chapter 2

Sum Capacity of Fading CDMA and Optimum Power

Allocation

2.1 Introduction

In this chapter, we focus on the sum capacity of a fading CDMA channel where

the number of users and the processing gain are finite and arbitrary, and the users

are assigned arbitrary deterministic signature sequences. Sum capacity quantifies

the maximum reliable rate of information flow in a network, and therefore it is a

commonly used performance metric for MACs [6,10,11]. Our goal is to find the sum

capacity maximizing power control policy for the fading CDMA system.

We consider a symbol synchronous CDMA system with processing gain N where

all K users transmit to a single receiver site. In the presence of fading and additive

white Gaussian noise (AWGN), the received signal within each symbol interval of

length T is given by

r(t) =
K
∑

i=1

√

pihibisi(t) + n(t), 0 < t < T (2.1)

13



where, for user i, bi denotes the information symbol with E[b2i ] = 1, si(t) denotes the

unit energy signature waveform,
√
hi denotes the random channel gain, and pi de-

notes the transmit power; n(t) denotes the AWGN with zero-mean and power spectral

density σ2. In our model (2.1) we assume quasi-static fading where the channel gain

is constant over the symbol duration T , i.e., hi(t) = hi, 0 ≤ t < T , but changes at

random from one symbol interval to the next. The signature waveforms can be rep-

resented by N orthonormal basis waveforms {ψj}N
j=1, such that si(t) =

∑N
j=1 sijψj(t),

where sij = 〈si(t), ψj(t)〉. Projecting the received signal onto the basis waveforms, i.e.,

rj = 〈r(t), ψj(t)〉, we obtain the sufficient statistics {rj}N
j=1. Therefore, the continuous

channel in (2.1) can be represented in an equivalent vector form as [12],

r =
K
∑

i=1

√

pihibisi + n (2.2)

where si = [si1, · · · , siN ]⊤ is the signature sequence of user i, and n is a zero-mean

Gaussian random vector with covariance σ2IN . We assume that the receiver and all of

the transmitters have perfect knowledge of the channel states of all users represented

as a vector h = [h1, · · · , hK ]⊤, as well as their statistics, which are assumed to be

independent across the users. We further assume that although the fading is slow

enough to ensure constant channel gain in a symbol interval, it is fast enough so that

within the transmission time of a block of symbols the long term ergodic properties

of the fading process can be observed [35].

Our problem reduces to K independent Goldsmith-Varaiya problems [5] when the

signature sequences are chosen to be orthogonal, and to a Knopp-Humblet problem [6]

14



when the signature sequences are chosen to be identical. We show that the optimum

power allocation policy is a simultaneous waterfilling policy that requires the solution

of a set of highly nonlinear equations. We develop an iterative power allocation policy,

where, at each step, only one user allocates its power optimally over all joint channel

states when the power allocations of all other users are fixed. The power allocation

of each user in this iterative process is a waterfilling where the base level of the water

tank is determined by the inverse of the SIR the user would obtain at the output of

a minimum mean squared error (MMSE) receiver if it transmitted with unit power.

We prove the convergence of our algorithm to an optimum solution, and provide

conditions for the uniqueness of that solution.

The information theoretic approach to power allocation has proved to have the

intriguing property that the capacity optimal power control policies for multi-access

channels have specific forms which automatically dictate optimal multiple access

strategies (i.e., channel adaptive time division of [6]), by assigning zero powers to

some of the users based on their channel states, thereby combining the medium ac-

cess control layer and the physical layer design of communication systems. Therefore,

one of the questions of interest, for a CDMA network with an arbitrary set of signature

sequences, is whether there exists a set of channel states having a non-zero probability

where either all or some of the users transmit simultaneously. In the case of orthogo-

nal signature sequences, for instance, all users transmit simultaneously in an orthant

of the space of all channel states where the channel states of all users exceed their

corresponding thresholds; and, clearly, this region has a non-zero probability. In the

case of identical signature sequences however, users transmit simultaneously only on
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a half-line in the space of all channel states; and, this region has a zero probability [6].

In the most general case, the existence of a region of channel states having non-zero

probability where all (or more than one) users transmit simultaneously depends on

the number of users, the dimensionality of the signal space (processing gain), and the

set of signature sequences being used. We identify the conditions under which such

a non-zero probability region of channel states exists. These conditions turn out to

be very mild; for instance, if the number of users is less than the processing gain and

the sequences are linearly independent, a simultaneous transmit region for all users is

guaranteed to exist. This region also exists even when the number of users is larger

than the processing gain so long as the signature sequences satisfy certain properties.

Also, even if these conditions are not satisfied for all users, there may be a subset of

users that are guaranteed to transmit simultaneously. This is a result of the fact that

CDMA scheme with non-identical signature sequences provides users with multiple

degrees of freedom; therefore, the users do not have to avoid each other completely

in the space of all channel states (as in the case of scalar channels), that is, multiple

users can share some of the channel states that are favorable to all of them.

The existence of simultaneous transmit regions is of interest to us since it provides

a sense of fairness, in that while maximizing the overall average rate achieved by the

system, it allows users to access the medium more frequently. This is in contrast to

the scalar channels where each user has to wait until its channel is the best in order

to transmit [6].
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2.2 Optimal Power Control via Iterative Waterfilling

For a given set of signature sequences and a fixed set of channel gains, h, the sum

capacity Csum(h) is [9]

Csum(h) =
1

2
log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

i=1

hip̄isis
⊤
i

∣

∣

∣

∣

∣

(2.3)

where p̄i is the average power of user i, and | · | denotes the determinant of its

argument. When the channel state is modelled as a random vector, the quantity

Csum(h) is random as well. If a constant (non-adaptive) power policy is applied,

the ergodic sum capacity is found as the expected value of Csum(h) over all channel

states [35],

Csum =
1

2
Eh

[

log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

i=1

hip̄isis
⊤
i

∣

∣

∣

∣

∣

]

(2.4)

where the expectation is with respect to the joint probability density function f(h) of

the components of the channel state vector h. In (2.4), the transmit power of user i

is fixed to p̄i, its average power constraint. Our goal is to choose the transmit powers

of the users as a function of the channel state pi(h), i = 1, · · · , K, with the aim of

maximizing the ergodic sum capacity of the system subject to average transmit power

constraints for all users. We formulate the problem as,

max
{pi(h)}

Eh

[

log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

i=1

hipi(h)sis
⊤
i

∣

∣

∣

∣

∣

]

s.t.Eh [pi(h)] = p̄i, pi(h) ≥ 0, i = 1, · · · , K (2.5)
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For arbitrary signature sequences, no closed form solution for this problem is known.

It is interesting to note that, (2.5) reduces to the Knopp-Humblet problem [6] if the

signature sequences are identical, i.e., si = s for all i, and it reduces to K separable

Goldsmith-Varaiya [5] problems, if the signature sequences are orthogonal, i.e., s⊤i sj =

0 for i 6= j, in which case each problem can be solved independently of the others. Our

aim is to find the optimal power allocation for the most general case where the signa-

ture sequences are arbitrarily correlated, i.e., s⊤i sj is not restricted to be zero or one.

Using the matrix inversion lemma [12] together with the fact that det(I + AB) =

det(I + BA) we can isolate the contribution of user k to the sum capacity as follows

Csum =
1

2
Eh

[

log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

i=1

hipi(h)sis
⊤
i

∣

∣

∣

∣

∣

]

=
1

2
Eh

[

log

∣

∣

∣

∣

∣

σ−2pk(h)hksks
⊤
k + IN + σ−2

∑

i6=k

hipi(h)sis
⊤
i

∣

∣

∣

∣

∣

]

=
1

2
Eh

[

log
∣

∣σ−2Ak

(

IN + pk(h)hkA
−1
k sks

⊤
k

)∣

∣

]

=
1

2
Eh

[

log
∣

∣σ−2Ak

∣

∣+ log
(

1 + pk(h)hks
⊤
k A−1

k sk

)]

(2.6)

Hence, we can express the ergodic sum capacity, the objective function of (2.5), as

Csum = Ck + Ck (2.7)

where

Ck =
1

2
Eh

[

log
(

1 + hkpk(h)s⊤k A−1
k sk

)]

(2.8)
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represents the contribution of the kth user to the sum capacity when the transmit

powers of all other users at all channel states are fixed, and

Ck =
1

2
Eh

[

log

∣

∣

∣

∣

∣

IN + σ−2
∑

i6=k

hipi(h)sis
⊤
i

∣

∣

∣

∣

∣

]

(2.9)

represents the sum capacity of the remaining users when the kth user is removed from

the system. In (2.8), Ak is defined as

Ak = σ2IN +
∑

i6=k

hipi(h)sis
⊤
i (2.10)

It is worth noting that Csum, the objective function in (2.5), is a concave function of

the powers, and moreover, provided that the matrices {sis
⊤
i }K

i=1 are linearly indepen-

dent, it is a strictly concave function of the powers [11]. Also, the constraint set in

(2.5) is convex. Therefore, the optimization problem in (2.5) has a unique global opti-

mum when {sis
⊤
i }K

i=1 are linearly independent; and all local optimums yield the same

objective function value, otherwise. Let us associate the Lagrange multipliers λk with

the equality constraints and µk with the inequality constraints. The optimum power

allocation policy satisfies the extended Karush-Kuhn-Tucker (KKT) conditions with

mixed constraints [36, Chap. 13], which, after taking the derivatives and employing

the complementary slackness conditions pkµk = 0, simplify to

hks
⊤
k A−1

k sk

1 + pk(h)hks⊤k A−1
k sk

≤ λk, k = 1, · · · , K, ∀ h ∈ RK (2.11)

which is satisfied with equality if and only if pk > 0. Using the fact that pk ≥ 0 for
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all i, (2.11) implies that the capacity maximizing power allocation policy satisfies

pk(h) =

(

1

λk

− 1

hks⊤k A−1
k sk

)+

, k = 1, · · · , K (2.12)

for any realization of the channel h.

Here the Lagrange multipliers λk are determined by inserting (2.12) into the aver-

age power constraints in (2.5). The values of λks depend on the statistical characteri-

zation of the channel and the choice of signature sequences. This solution is similar in

structure to the solution in [11], however it is more general in that it is valid for any

continuous joint fading distribution, any power constraints and any finite number of

deterministic signature sequences, as opposed to the symmetric and asymptotical sit-

uation in [11]. Note that, even though the continuity and independence assumptions

on fading will be needed in order to prove the simultaneous transmission conditions

for the optimal power allocation policy in Section 2.3, the characterization of optimal

power allocation policy in (2.12) does not require these assumptions.

For arbitrary signature sequences, the set of equations (2.12) is highly nonlinear.

Although it is possible to solve for the optimum powers and transmit regions in a

simple system with few users, it seems intractable for systems with large numbers

of users. It is worth noting that hks
⊤
k A−1

k sk is the SIR of user k at the output of

an MMSE receiver if it transmitted with pk = 1. Therefore, all users should simul-

taneously waterfill on the “base levels” of the inverse of the SIRs they would obtain

if they transmitted with unit powers. Since solving for the simultaneous waterfilling

solution for all users seems intractable, we devise an iterative algorithm. Consider
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optimizing for the power of only user k over all channel states, given the powers of

all other users at all channel states,

pn+1
k = arg max

pk

Csum
(

pn+1
1 , · · · , pn+1

k−1 , pk, p
n
k+1 · · · , pn

K

)

= arg max
pk

Ck (pk) (2.13)

where Ck(pk) denotes the contribution of user k to Csum, as defined in (2.8). Ck(pk)

depends on the power distributions and signature sequences of other users through

Ak’s which change as a function of the channel state. We have already noted that

the objective function Csum is a concave function of the powers, and also that Ck(pk)

given by (2.8) is a strictly concave function of pk. The constraint set for powers over

which the maximization is to be performed is convex, and has a Cartesian product

structure among the users. The solution of (2.13) can be found as a single-user

waterfilling over all channel states of the system,

pk(h) =

(

1

λ̃k

− 1

hks⊤k A−1
k sk

)+

(2.14)

If we let only one user allocate its power over all channel states using (2.14), and iterate

over all users sequentially, this iterative one-user-at-a-time algorithm is guaranteed

to converge to the global optimum solution of (2.5) [37, Prop. 3.9].

A snapshot from one of the iterations of the one-user-at-a-time algorithm is illus-

trated in Figure 2.1, where user 1 allocates its power by filling the tank, the base of

which is determined by the interference caused by user 2. The level of the water is
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determined by the average power constraint, and is equal to λ̃ at that iteration.

Figure 2.1: Illustration of waterfilling for user 1 over the channel state space. The
base level for the tank is determined by the power level of user 2 which is kept fixed
for this iteration.

As noted earlier, hks
⊤
k A−1

k sk denotes the SIR user k would obtain at the output of

an MMSE filter if it transmitted with unit power. Therefore, at any given iteration,

a user waterfills over the inverse of the SIRs it would obtain at all channel states if it

transmitted with unit power, given the current power allocations of all other users:

the user puts more power into states where its expected SIR with unit transmit power

is larger. When the signature sequences of the users are all orthogonal, iteration in

22



(2.14) reduces to

pk(h) =

(

1

λ̃k

− σ2

hk

)+

(2.15)

and converges to the optimum solution found in [5] in one step. When the signature

sequences of the users are identical, iteration in (2.14) becomes

pk(h) =

(

1

λ̃k

−
σ2 +

∑

i6=k hipi(h)

hk

)+

(2.16)

and converges to the solution found in [6]. Note here that, the SIR in (2.16) takes

the familiar form of the SIR at the output of a MF, since in this case MMSE filters

reduce to scaled MFs. Finally, we note that, the iterative implementation of the “si-

multaneous waterfilling in time” presented in this chapter is analogous to the iterative

implementation of the “simultaneous waterfilling over parallel channels” in [8].

2.3 Properties of the Optimal Power Allocation

Let us now consider the inverse problem of finding the channel state of the system

for a given transmit power vector with non-zero components. Since all components

of the power vector are non-zero, this means that all users transmit simultaneously

at this particular channel state, and (2.11) should be satisfied with equality for all k.

Therefore, given any arbitrary power vector p with 0 < pi < 1/λi, the channel state

where this power vector is used can be found by solving

h = f(h) (2.17)
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where the vector function f(h) is defined as

fk(h) =
λk

(1 − λkpk)

1

s⊤k A−1
k sk

, k = 1, · · · , K (2.18)

Our first goal is to show that there exists a unique vector h of channel states corre-

sponding to any given non-zero solution p to the power control problem. To this end,

we first need to prove some properties of the function f(h).

Definition 2.1 ([3]) f(h) is standard, if for all h ≥ 0, the following properties are

satisfied.

• Positivity: f(h) > 0

• Monotonicity: If h ≥ h′ then f(h) ≥ f(h′)

• Scalability: For all α > 1, αf(h) > f(αh)

Lemma 2.1 Let 0 < pk < 1/λk, for all k. Then, f(h) is standard.

Proof: For notational convenience, let us define

gk(h, ck) =
λk

(1 − λkpk)

∑

i6=k pihi

(

c⊤k si

)2
+ σ2

(

c⊤k ck

)

(

c⊤k sk

)2 (2.19)

=
λk

(1 − λkpk)

c⊤k Akck
(

c⊤k sk

)2 (2.20)

Then, interpreting ck as a linear receiver filter, we can relate fk(h) to gk(h, ck) by

fk(h) = min
ck

gk(h, ck) (2.21)
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where the filter that minimizes gk(h, ck) is c∗k = A−1
k sk, i.e., a scaled version of the

well-known MMSE filter.

For 0 < pk < 1/λk, gk(h, ck) > 0 for any ck, due to non-zero noise variance. Then,

fk(h) = minck
gk(h, ck) > 0, proving the positivity.

For monotonicity, let h ≥ h′,

fk(h) = min
ck

gk(h, ck) (2.22)

= gk(h, c
∗
k) (2.23)

≥ gk(h
′, c∗k) (2.24)

≥ min
ck

gk(h
′, ck) = fk(h

′) (2.25)

Inequality (2.24) follows from (2.19) noting that h ≥ h′ and ck is fixed.

For scalability, we pick α > 1,

αfk(h) = αmin
ck

gk(h, ck) (2.26)

= αgk(h, c
∗
k) (2.27)

> gk(αh, c∗k) (2.28)

≥ min
ck

gk(αh, ck) = fk(αh) (2.29)

Inequality (2.28) follows from (2.19) noting that α > 1 and ck is fixed. 2

Note that, since f(h) is standard, if there is a solution for (2.17), it is unique [3].

In fact, one can devise an iterative algorithm to find this solution,

h(n+ 1) = f(h(n)) (2.30)
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The problem in (2.17) with the definition of f(h) in (2.18) is very similar to the

joint power control and linear receiver filter design problem in [38]. In [38], the prob-

lem is to solve for the componentwise smallest power vector p and the receiver filters

{ci}K
i=1 such that all users satisfy their SIR based quality of service requirements. For

a single receiver site (e.g., single-cell) system, the problem becomes that of finding

componentwise smallest power vector and receiver filters that satisfy

SIRk =
pkhk

(

c⊤k sk

)2

∑

i6=k pihi

(

c⊤k si

)2
+ σ2

(

c⊤k ck

)
≥ βk (2.31)

where βk, k = 1, · · · , K are the SIR targets.

When there are no maximum power constraints, solving for optimum transmit

powers p, and received powers q where qk = pkhk, are equivalent. The optimum

transmit powers can be found using the optimum received powers via p∗k = q∗k/hk.

Then, from (2.31) and (2.10),

SIRk =
qk
(

c⊤k sk

)2

c⊤k Akck

≥ βk (2.32)

For any given set of powers, ck should be chosen to be the MMSE filter as it maximizes

the SIR [38]. Using the MMSE filters ck = αkA
−1
k sk, the problem becomes equivalent

to solving for q in

qks
⊤
k A−1

k sk = βk (2.33)

While [38] developed a distributed iterative algorithm that converges to the optimum

powers (and receivers) assuming that the problem is feasible, [39] found the conditions
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on the SIR targets {βi}K
i=1 and the signature sequences {si}K

i=1 that guarantee that

the problem is feasible, i.e., positive qks that satisfy (2.33) exist. The SIR targets

β1, · · · , βk are feasible if and only if [39, Thm. 10],

∑

k∈U

βk

1 + βk

< rank(S(U)), ∀ U ⊂ {1, · · · , K} (2.34)

where S(U) is the matrix containing the sequences of the users in the subset U .

In our problem, the channel gains are found for any given power vector by solving

(2.17),

hkpks
⊤
k A−1

k sk =
λkpk

(1 − λkpk)
(2.35)

Since there are no maximum constraints on the channel gains, solving for hk and

qk = hkpk are equivalent, as we can obtain the solution for hk using the solution for

qk via h∗k = q∗k/pk. Thus, our problem is equivalent to (2.33) where βk are given by

βk =
λkpk

(1 − λkpk)
, k = 1, · · · , K (2.36)

and are determined by the given power vector. The set of feasible powers can then

be found by inserting (2.36) into (2.34)

∑

k∈U

λkpk < rank(S(U)), ∀ U ⊂ {1, · · · , K} (2.37)

Therefore, once we fix a power vector satisfying (2.37), (2.17) has a unique solution,

since f(h) is standard. That is, the power vector we chose is a possible candidate for
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the optimum power allocation at the channel state obtained by solving (2.17). This

means that, corresponding to a set of feasible power vectors, there always exists a

set of channel states where all of the users in the system transmit simultaneously.

This set however can have zero probability as in [6], which is the result of the fact

that, although we can find a unique channel state for a feasible power vector, multiple

feasible power vectors may correspond to the same channel state, i.e., there may be

multiple optimum power vectors with the same Csum. That is, the mapping between

the powers and the channel states is not one-to-one, in general.

The significance of (2.37) for our purposes is that the set of feasible power vectors

constitutes a volume in K dimensional space. For the set of feasible power vectors

satisfying (2.37), and having strictly positive components, if the set of corresponding

channel states found by solving (2.17) have a non-zero measure, then we can conclude

that all users transmit simultaneously with a positive probability.

Theorem 2.1 There exists a non-zero probability region of fading states h where all

K users transmit simultaneously, if and only if {sis
⊤
i }K

i=1 are linearly independent.

Proof: It is clear that the set of feasible powers as given by (2.37) constitutes a vol-

ume V in RK . Let us then pick any point p0 > 0 in this set, and compute the channel

state which corresponds to this particular solution of powers. By feasibility of p0, the

resulting channel state h0 is unique, and the original vector p0 satisfies the KKT con-

ditions at h0. Given that {sis
⊤
i }K

i=1 are linearly independent, we know that there exists

a unique global maximum for Csum since it is strictly concave. Therefore, the water-

filling solution we get at the fading state h0 should be equal to p0, as it is a possible
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solution to the problem, and the problem has a unique global optimum. Hence, we ob-

tain a unique fading state for a power level, and a unique power for a fading state, for

a set of powers satisfying (2.37). This implies that there exists a one-to-one mapping

from the space of feasible strictly positive powers to the space of fading states. This

one-to-one mapping maps the volume V ⊂ RK of feasible powers to a volume of fading

states Ṽ ⊂ RK implying that the resulting set of fading states where K users transmit

simultaneously has non-zero probability. This completes the proof of the if part.

For the only if part, consider the case where {sis
⊤
i }K

i=1 are linearly dependent.

For all K users to transmit simultaneously with non-zero powers, (2.11) must be

satisfied with equality for all k. By applying matrix inversion lemma, and defining

A = σ2IN + SPS⊤, which contains all users’ powers and signatures, (2.11) can be

written in the alternative form

hks
⊤
k A−1sk = λk, k = 1, · · · , K (2.38)

Each of these equations can also be rewritten as,

hktr
(

A−1sks
⊤
k

)

= λk, k = 1, · · · , K (2.39)

If {sis
⊤
i }K

i=1 are linearly dependent, then any one of the elements of this set, say sks
⊤
k ,

can be written as a linear combination of the others, say, with coefficients αi, not all

equal to zero. Thus,

hktr(A
−1
∑

i6=k

αisis
⊤
i ) = hk

∑

i6=k

αis
⊤
i A−1si = λk (2.40)
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and using (2.38) in (2.40), we get

∑

i6=k

αi
λi

hi

=
λk

hk

(2.41)

This means that, if {sis
⊤
i }K

i=1 are linearly dependent, then regardless of the power lev-

els, for all users to transmit simultaneously, the channel states should satisfy (2.41).

Since the channel states are continuous random variables, this event has zero prob-

ability. Therefore, given that {sis
⊤
i }K

i=1 are linearly dependent, all K users transmit

simultaneously only with zero probability. 2

Therefore, the necessary and sufficient condition for all K users to transmit simul-

taneously with non-zero probability is that the signature sequences are such that the

matrices {sis
⊤
i }K

i=1 are linearly independent. Our first corollary below states that if

the signature sequences {si}K
i=1 are linearly independent, then {sis

⊤
i }K

i=1 are linearly

independent and all users transmit simultaneously with non-zero probability.

Corollary 2.1 When K ≤ N , for a set of K linearly independent signature se-

quences, there always exists a non-zero probability region of channel states where all

K users transmit simultaneously.

Proof: Assume that {si}K
i=1 are linearly independent. For {sis

⊤
i }K

i=1 to be linearly

dependent, we should be able to write

sks
⊤
k =

∑

i6=k

αisis
⊤
i (2.42)

30



with at least two non-zero αis; if only one αi is non-zero, this implies that two signa-

ture sequences are the same violating the fact that {si}K
i=1 are linearly independent.

The ranks of both sides of (2.42) have to be equal. As {si}K
i=1 are linearly indepen-

dent, the rank of the right hand side is equal to at least two, whereas that of the

left hand side is always one. Therefore, the set {sis
⊤
i }K

i=1 are linearly independent for

linearly independent signature sequences, and the result follows from Theorem 2.1.

2

It is hard to find closed form expressions for the region of the channel gains where

all users transmit simultaneously. For a simple two-user system, it can be shown that

both users transmit with non-zero powers when h belongs to a region expressed by

h1 >
λ1σ

2h2

h2 (1 − ρ2) + ρ2σ2λ2

, h2 >
λ2σ

2h1

h1 (1 − ρ2) + ρ2σ2λ1

(2.43)

where ρ = s⊤1 s2 denotes the cross correlation between the signature sequences of the

users. This region is depicted in Figure 2.2.

It is interesting to note that when h2 goes to infinity, the lower bound on h1

approaches the limit λ1σ
2/(1− ρ2), and as h1 goes to infinity, the lower bound on h2

goes to λ2σ
2/(1− ρ2). These are the two (horizontal and vertical) asymptotes shown

in Figure 2.2. For more than two users, even though the exact expressions for the

boundaries of the simultaneous transmission region are nonlinear and complex, we

can describe an “orthant” of the space of all channel states where all users transmit

simultaneously. This orthant is a subset of the actual simultaneous transmission

region.
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Figure 2.2: Transmit region boundaries for two users with correlated signature se-
quences.

Theorem 2.2 For a set of K linearly independent signature sequences, the region of

channel states where all users transmit simultaneously includes an “orthant” in RK

described by,

hk > λkσ
2(R−1)kk, k = 1, · · · , K (2.44)

where R = S⊤S is the correlation matrix of the signature sequences.

Proof: From (2.11), user k transmits when its channel state hk satisfies

hk =
λk

(1 − λkpk)

1

s⊤k A−1
k sk

(2.45)

The transmit power of the user satisfies 0 < pk < 1/λk. Therefore, user k transmits

with non-zero power if and only if

hk >
λk

s⊤k A−1
k sk

(2.46)
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Comparing the right hand side of (2.46) with (2.18), it is easy to see that it is a

standard function and is increasing in pihi, i 6= k. Thus, from the monotonicity of

λk/s
⊤
k A−1

k sk we have,

λkσ
2 ≤ λk

s⊤k A−1
k sk

≤ λkσ
2(R−1)kk (2.47)

where the first inequality is satisfied with equality when the received powers pihi of all

other users are zero, and the second inequality follows from the fact that the SIR of the

linear MMSE detector is always larger than or equal to the SIR of the decorrelating

detector. In fact, the upper bound becomes tight as pihi, i 6= k go to infinity for

a fixed noise variance σ2, as the MMSE detector converges to the decorrelator [12].

Now, if the channel gains are such that

hk > λkσ
2(R−1)kk, k = 1, · · · , K (2.48)

using (2.47) we get

hk > λkσ
2(R−1)kk ≥ λk

s⊤k A−1
k sk

, k = 1, · · · , K (2.49)

and conclude that all users transmit in the region of channel states where hk >

λkσ
2(R−1)kk, k = 1, · · · , K. 2

It is worth mentioning that Theorem 2.2 could also have been used to prove

Corollary 2.1, by noting

P [all users transmit] ≥ P
[

h : hk > λkσ
2(R−1)kk

]

> 0 (2.50)
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Figure 2.2 illustrates the statement of Theorem 2.2, for two users with correlated

signature sequences. The orthant described in the theorem in this case is the infinite

rectangle (λ1σ
2(R−1)11,∞) × (λ2σ

2(R−1)22,∞).

Since, as stated by Theorem 2.1, for all K users to transmit simultaneously

{sis
⊤
i }K

i=1 should be linearly independent, the number of users transmitting simul-

taneously with non-zero powers cannot be arbitrarily large. The following corollary

to Theorem 2.1 gives a bound on the maximum number of users that can transmit

simultaneously.

Corollary 2.2 For a set of K signature sequences and processing gain N, let the rank

of the signature sequence matrix S be M ≤ min{K,N}. Then the number of users

that can transmit simultaneously cannot be larger than min{K,M(M + 1)/2}.

Proof: If K ≤ M(M + 1)/2, the bound is trivial. Let’s focus on the case K >

M(M + 1)/2. If rank(S) = M , the signature sequences can be written as,

sk =
M
∑

i=1

akivi (2.51)

where the N × 1 vectors {vi}M
i=1 constitute an orthonormal basis spanning the signa-

ture sequences. Then,

K
∑

k=1

αksks
⊤
k =

K
∑

k=1

M
∑

i=1

M
∑

j=1

αkakiakjviv
⊤
j (2.52)

=
M
∑

i=1

M
∑

j=1

viv
⊤
j

K
∑

k=1

αkakiakj (2.53)

=
M
∑

i=1

M
∑

j=1

βijviv
⊤
j = VBV⊤ (2.54)
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where V is a matrix with columns vi and Bij = βij, with βij defined by (2.54).

Therefore, {sis
⊤
i }K

i=1 are linearly independent if and only if the equality VBV⊤ =

0N×N implies αk = 0, k = 1, · · · , K. Note that V is an orthonormal matrix by

construction, and if VBV⊤ = 0N×N then multiplying this by V⊤ and V from left

and right we obtain B = 0M×M . This dictates,

K
∑

k=1

αkakiakj = 0 i, j ∈ {1, · · · ,M} (2.55)

K
∑

k=1

αkaka
⊤
k = 0M×M (2.56)

where ak = [ak1, · · · , akM ]⊤. The dimensionality of the space of M ×M symmetric

matrices is M(M + 1)/2, therefore if K > M(M + 1)/2, we can find αk not all zero,

such that (2.56) is satisfied, and {sis
⊤
i }K

i=1 are guaranteed to be linearly dependent,

and the result follows from Theorem 2.1. 2

So far, we have established results that relate to the simultaneous transmission of

all users in the system. The following corollary to Theorem 2.1 is an extension of the

simultaneous transmission result given for all users by Theorem 2.1 to an arbitrary

subset of {1, · · ·K}.

Corollary 2.3 The sum capacity maximizing power control policy dictates that there

exists a non-zero probability region of fading states h where a subset E ⊂ {1, · · · , K}

of users transmit simultaneously, if and only if {sis
⊤
i }i∈E are linearly independent.

Proof: The only if part follows immediately from the proof of Theorem 2.1, by letting

{sis
⊤
i }i∈E be linearly dependent, and writing any sks

⊤
k , k ∈ E as a linear combination
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of the remaining matrices {sis
⊤
i }i∈E, i6=k. This, together with the KKT conditions for

optimality, gives the following relation between the channel gains,

∑

i∈E, i6=k

αi
λi

hi

=
λk

hk

(2.57)

which is a zero probability event by virtue of the channel states being continuous

random variables. This proves the only if part.

We show the if part by proving that the probability P{pi(h) > 0, i ∈ E} is bounded

away from zero for linearly independent {sis
⊤
i }i∈E.

P [pi(h) > 0, i ∈ E]

≥ P [pi(h) > 0, i ∈ E, pj(h) = 0, j /∈ E] (2.58)

≥ P
[

pi(h) > 0, i ∈ E, hj ≤ σ2λj, j /∈ E
]

(2.59)

= P

[

hi >
λi

s⊤i A−1
i si

, i ∈ E, hj ≤ σ2λj, j /∈ E

]

(2.60)

= P






hi >

λi

s⊤i

{

IN +
∑

k∈E,k 6=i
hkpk(h)

σ2 sks⊤k

}−1

si

, i ∈ E, hj ≤ σ2λj, j /∈ E






(2.61)

= P






hi >

λi

s⊤i

{

IN +
∑

k∈E,k 6=i
hkpk(hE)

σ2 sks⊤k

}−1

si

, i ∈ E






P
[

hj ≤ σ2λj, j /∈ E
]

(2.62)

> 0 (2.63)

Here, (2.58) follows from the fact that the set on the right hand side is a subset of

that on the left hand side, (2.59) follows because user j does not transmit regardless
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of the powers of other users if hj ≤ σ2λj, (2.60) follows from (2.46), and (2.61) follows

because users j /∈ E have zero powers, within the set in (2.60). Note that in (2.61),

the powers pk(h), which are given by (2.12), actually depend only on the channel

states of users in E. Thus, we define

pk(hE) = pk(h)|pj(h)=0, k ∈ E, j /∈ E (2.64)

Then, (2.62) follows from independence of the channel states for different users, where

the vector hE is defined as the vector of channel states for users in E. Clearly, the

second term on the right hand side of (2.62) is positive. In order to prove (2.63),

we will interpret the first term in (2.62) as the probability that all users transmit

simultaneously in an equivalent |E| user problem. To accomplish this, consider a

fictitious problem, where we have only the users k ∈ E in another CDMA system,

and users k ∈ E still employ the signature sequences sk. The noise variance σ2 is also

the same as in our original problem (2.2). Say we would like to maximize the sum

capacity for the new system with |E| users, and let each user i ∈ E have a power

constraint given by

p̄′i = EhE
[pi(hE)] (2.65)

Then, the power allocation {pi(hE)}i∈E is optimal in the sense of maximizing the sum

capacity for the fictitious sub-problem. Consequently, the first term in (2.62) is simply

the probability that all users transmit with non-zero powers for this new problem,

and by Theorem 2.1, this probability is greater than zero as long as {sis
⊤
i }i∈E are

linearly independent, which establishes the if part. 2
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2.4 Simulation Results

In this section, we give some simple numerical examples to support our analysis. Fig-

ures 2.3 and 2.4 give an example for the two user case where the signature sequences

are correlated with s⊤1 s2 = 0.966. In this example, the processing gain is N = 2,

the channel is an i.i.d. Rayleigh channel with parameter 1, that is hk, k = 1, · · · , K

are exponential random variables (squares of Rayleigh random variables) with mean

1. Figure 2.3 shows the power of user 1 for each fading level. In this figure, the

transmit power of user 1 is represented by gray levels, lighter colors corresponding

to more power. Note that, user 1 performs a single user waterfilling wherever user 2

does not transmit. In this region, the transmit power of user 1 for a fixed h1 is con-

stant (independent of h2). However, once user 2 starts transmitting, the “base level

of the water tank” is increased, decreasing the power level of user 1 with increasing

h2. Figure 2.4 shows the transmit regions in the space of channel states of the two

users. The small dark region near the origin corresponds to the channel states where

both users have zero power. Gray regions marked by “user 1” and “user 2” show the

channel states where only one of the users transmits, whereas the white region shows

the simultaneous transmit region. The simulated system corresponds to the setting

in Corollary 2.1, and Theorem 2.2.

We have noted earlier that the optimal power allocation depends on the fading

distribution only through the thresholds λk. Therefore, the choice of channel fading

distribution should not affect the structure of the transmit regions, except for possible

shifts and scalings. To show this, we repeat our simulations for a channel where hk
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Figure 2.6: Transmit regions for uniform fading.
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are uniform i.i.d. random variables in (0,2], all other parameters being the same.

Figures 2.5 and 2.6 show the corresponding power levels and transmit regions, for

this narrower span of possible channel states to emphasize better all four of the

transmit regions. We see that the λk value is slightly changed by the change in

channel distribution, but the transmit regions and power distribution are very similar

to the previous case.

Figure 2.7 illustrates the convergence of the iterative waterfilling algorithm to

the maximum sum capacity of the system under uniform fading U(0,2], with average

transmit powers equal to p̄k = 1 and noise variance equal to σ2 = 0.1; the convergence

is quite fast as suggested by the plot.

A consequence of Theorem 2.1 is that we can have multiple users transmit simul-

taneously with non-zero probability, even when the signature sequences are linearly

dependent, as long as we can have the linear independence of {sis
⊤
i }K

i=1. Figure 2.8

shows the region where all users transmit for K = 3 and N = 2, the colored portions

correspond to the states where all three users transmit simultaneously, in the 3-D

channel state space.

In general, the probability that all users transmit simultaneously, i.e., the proba-

bility of the colored region, depends on the cross-correlations between the signature

sequences, fading statistics and power constraints. As an example, for a system with

K = 3, N = 2, p̄ = 1, σ2 = 0.1, uniform U(0,1) fading, and the correlations between

the sequences ρ12 = 0.898, ρ13 = 0.645, ρ23 = 0.916; the probability that all users

transmit simultaneously is 0.245.
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2.5 Summary and Conclusions

We characterized the optimum power allocation policy that achieves the sum capacity

of a fading CDMA system that employs fixed deterministic signature sequences. The

optimum allocation is shown to be a simultaneous waterfilling of the powers of all

users, which in general does not have a tractable analytical solution. Therefore, we

devised an algorithm that computes the optimum transmit powers of the users at all

channel states. The algorithm is an iterative waterfilling of powers of all users over all

fading states treating at each step all other users’ signals as additional colored noise.

We showed that this iterative strategy converges to a globally optimum solution,

and that the global optimum is unique if the signature sequence set is such that the

matrices {sis
⊤
i }K

i=1 are linearly independent.

We also showed that, the optimum power allocation scheme in the vector MAC

of interest dictates more than one user to transmit simultaneously at some channel

states, and the set of such channel states has a non-zero probability under certain

mild conditions on the signature sequences. In fact, all K users in the system are

shown to transmit simultaneously with non-zero probability, if and only if {sis
⊤
i }K

i=1

are linearly independent. An immediate implication of this is that, if the signature

sequences {si}K
i=1 are linearly independent, then all users transmit simultaneously in

a non-zero probability region of the channel states. We extended this simultaneous

transmit condition for all users to one for an arbitrary subset of users. We further

showed that if the signature sequence matrix S of the users in the system has rank

M , the number of users transmitting simultaneously with nonzero probability cannot
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be larger than min{K,M(M + 1)/2}.

The results of this chapter have been published in [13,14].

44



Chapter 3

Capacity Region with Fixed Sequences and Adaptive Powers

3.1 Introduction

For a fading CDMA network, the sum capacity maximization problem was addressed

in Chapter 2, where the optimal power allocation policy and some of its properties

were characterized. Sum capacity is perhaps the most desirable metric from the

network operator’s point of view, as it is the maximum reliable rate of information flow

in the network. However, in practical communication systems, the varying demand

of various users may dictate a design which allows for multiple rate classes, where

different users are assigned different priorities. Therefore, in a multi-access system

the goal is not always to maximize the sum of achievable rates, it may as well be to

achieve an arbitrary rate tuple on the capacity region boundary, i.e., to maximize a

weighted sum of rates.

The capacity region for a MAC is defined as the set of all rate tuples at which

all transmitters can communicate their messages to the receiver reliably, i.e., with

probability of error arbitrarily close to zero. For traditional scalar MACs in the

absence of fading, the capacity region has been studied extensively, and was estab-
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lished in the classical works by Ahlswede, Liao, Cover and Wyner [40–43]. For fading

scalar MAC, the capacity region, and the corresponding power control policies for the

scalar MAC were characterized more recently in [7]. The capacity region is shown

to be a union of the capacity regions (polymatroids) achievable by all valid power

allocation policies, i.e., the policies that satisfy the average power constraints. The

optimal power allocation policy for each rate tuple on the capacity region is obtained

by a greedy algorithm, which compares certain marginal utility functions, and makes

use of the generalized symmetry properties of the rank function of the polymatroid

corresponding to the rate tuple in question.

The capacity region for a non-fading vector MAC, where the total average powers

of the components of the transmitted vectors are constrained, is given by [8]. There,

also an iterative waterfilling algorithm which allocates the powers over the compo-

nents of the transmitted vector in order to maximize the sum capacity was proposed.

The power allocation problem for a fading vector MAC was considered in [10], again

with the aim of maximizing the sum capacity. It was shown that, the optimal power

allocation in the fading case as well satisfies the Karush-Kuhn-Tucker (KKT) con-

ditions, which can also be interpreted as simultaneous waterfilling, where the water

levels are matrices.

In Chapter 2, where we have obtained the sum capacity of a power controlled

fading CDMA channel with perfect CSI at the transmitters and the receiver, we

have somewhat bypassed the underlying encoding and decoding strategy that indeed

gives the sum capacity expression (2.5). Instead, we treated the problem mainly

from an optimization point of view, by regarding the power levels as variables, and
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generalizing the objective function trivially from its scalar counterpart [6]. In this

chapter, we precisely characterize the capacity region of a fading CDMA system with

fixed sequences, and perfect CSI at the transmitters and the receiver. We show that,

treating the powers as the only design parameters as we did in Chapter 2 is in fact the

most one can do, establishing precisely that the objective function (2.5) was indeed

on the capacity region boundary, and also that all other points on the capacity region

can be achieved by appropriately choosing the allocated powers.

Also, inspired by the findings in [7], we investigate strict convexity of the capacity

region. Strict convexity of the capacity region plays an important role in decoding.

For a strictly convex capacity region (i.e., the one in [7]) any point on the boundary

of the capacity region may be achieved without timesharing, whereas if there is a

flat portion on the capacity region, the rate tuples falling in this region need to

be achieved by methods like timesharing [44] or rate splitting [45] among different

successive decoding points. We show that unless the signature sequences of all users

are identical or orthogonal, the capacity region is not strictly convex, and there are

infinitely many rate tuples that achieve the sum capacity.

Next, we consider the problem of solving for the power allocation policy that

achieves an arbitrary rate tuple on the capacity region of fading CDMA. As in [7]

and [8], this problem is equivalent to a maximization of a weighted sum of rates,

subject to average power constraints. However, the algorithm proposed in [7] to find

the power allocation policies that achieve the boundary points of the scalar MAC

does not generalize to the CDMA case. This is due to the fact that the generalized

symmetry properties of the rank functions that describe the capacity region of a scalar
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MAC does not carry over to an arbitrary CDMA system, in which non-identical

signature sequences are employed. Instead, we make use of the concavity of the

objective function and the convexity of the constraints, and write the KKT conditions

at each fading state, for a given set of weights. We then develop a “generalized”

waterfilling approach, where we gradually pour some power at some or all channel

states until all the KKT conditions are satisfied. Using this approach, we propose a

one-user-at-a-time algorithm which is similar in spirit to those in [8,13,14], and show

that it converges to the optimum power allocation for any given point on the boundary

of the capacity region. This algorithm, while providing a systematic solution to the

capacity achieving power allocation problem in fading CDMA, also provides as a

special case, an intuitive approach to the power allocation for scalar MAC in [7].

We also relax the somewhat impractical assumption of perfect CSI at the trans-

mitters, and investigate the effects of limited feedback rates from the receiver to the

transmitters. We show that even with very low feedback rates, it is possible to achieve

rates very close to the capacity region boundary.

3.2 Capacity Region of Fading CDMA

We first provide the capacity region of a fading CDMA channel where users have

perfect CSI, and are able to choose their transmit powers as a function of these

channel states, subject to average power constraints. The capacity region is obtained

by a simple extension of [7], which deals with an equivalent problem in the case of

scalar MAC. As in the scalar fading MAC [7], the capacity region of the fading CDMA
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is a union of capacity regions obtained for each valid power allocation policy.

For the CDMA system given by (2.2), let the transmitters be able to choose their

powers as a function of the channel state, subject to the average power constraints

Eh[pi(h)] ≤ p̄i. We first characterize the set of long term achievable rates, i.e., the

capacity region, for fading CDMA. Hanly and Tse [7, Thm. 2.1] have characterized

the capacity region for a power controlled scalar multi-access channel. Both forward

and converse parts of the proof of this theorem can be directly generalized to the

CDMA channel, also by incorporating the methods and results from [9, Prop. 1]

and [46, Thm. 1]. Therefore, we state the capacity region of the fading CDMA

channel in the following theorem, without providing a proof.

Theorem 3.1 Let P = {p(h) : Eh[pi(h)] ≤ p̄i,∀i} denote the family of valid power

allocation policies. The capacity region C of a fading CDMA channel under additive

white Gaussian noise, where users have perfect CSI and allocate their powers as a

function of the CSI is given by,

⋃

p(h)∈P

{

R :
∑

i∈Γ

Ri ≤ Eh

[

1

2
log

∣

∣

∣

∣

∣

IN + σ−2
∑

i∈Γ

hipi(h)sis
⊤
i

∣

∣

∣

∣

∣

]

, ∀Γ ⊂ {1, · · · , K}
}

(3.1)

Figure 3.1 illustrates a typical capacity region for some fixed signature sequences

s1 and s2 in a two user setting. Each of the pentagons corresponds to a valid power

allocation policy. Note the flat portion on the capacity region, which in fact is the

dominant face of one of the pentagons. Unlike scalar multi-access channel capacity

region [7], the capacity region for fading CDMA may contain such a flat region, and
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Figure 3.1: Sample two user capacity region.

in general is not strictly convex. That is, the rate pairs on the line segment |AB| in

the figure are in general achieved by time-sharing between the points A and B. This

can be shown by noting that the pentagon containing |AB| corresponds to the power

control policy that maximizes the sum capacity, and then proving that for correlated

signature sequences, there are infinitely many rate tuples that give the same sum

rate. This is stated more precisely in the following theorem.

Theorem 3.2 The capacity region of a power controlled fading CDMA channel is

not strictly convex, provided ∃ i, j ∈ {1, · · · , K} such that i 6= j and 0 < s⊤i sj < 1.

Proof: Let P(h) = {p∗1(h), · · · , p∗K(h), ∀h} be the power control policy that max-

imizes the sum of rates of all users, i.e., the sum capacity. The capacity region

corresponding to this particular power control policy is a polymatroid GP(h), with
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corners in the positive “quadrant” given by

RΓ(k+1) = Eh





1

2
log

∣

∣

∣IN + σ−2SΓk+1
DΓk+1

(h)S⊤
Γk+1

∣

∣

∣

∣

∣IN + σ−2SΓk
DΓk

(h)S⊤
Γk

∣

∣



 , k = 0, · · · , K − 1 (3.2)

where S = [s1 · · · sK ], D(h) = diag[p∗1(h)h1, · · · , p∗K(h)hK ], Γ , [Γ(1), · · · ,Γ(K)] is

any permutation of {1, · · · , K}, Γk , [Γ(1), · · · ,Γ(k)] for k = 1, · · · , K, and Γ0 , ∅.

DΓk
and SΓk

refer to sub-matrices containing only the received powers and signature

sequences of the users in the subset Γk. Each one of the K! possible permutations

correspond to a corner point of the polymatroid GP(h), and the polygon formed by

the convex hull of all these points is called the dominant face of GP(h). Note that,

since any point on the dominant face of GP(h) achieves the maximum sum capacity, it

should also lie on the surface of the overall capacity region C. That is, the dominant

face of GP(h) constitutes a portion of the surface of C. Therefore, for the surface of C

to be strictly convex, we need all the corners (3.2) of the dominant face to collapse

to a single point. It is easy to see that this condition can be summarized by

Eh

[

log
∣

∣IN + σ−2SEDE(h)S⊤
E

∣

∣

]

=
∑

i∈E

Eh

[

log
(

1 + σ−2p∗i (h)hi

)]

, ∀E ⊂ {1, · · · , K}

(3.3)

Define QE(h) , SEDE(h)1/2. Then for all h, we have

log
∣

∣IN + σ−2SEDE(h)S⊤
E

∣

∣ = log
∣

∣IN + σ−2QE(h)QE(h)⊤
∣

∣ (3.4)

= log
∣

∣I|E| + σ−2QE(h)⊤QE(h)
∣

∣ (3.5)

≤
∑

i∈E

log
(

1 + σ−2p∗i (h)hi

)

(3.6)
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where the last step follows from Hadamard’s inequality [44], and the equality is

achieved if and only if WE(h) , QE(h)⊤QE(h) is diagonal. Since (3.6) holds for

all h, (3.3) holds when and only when WE(h) is diagonal for almost all h (i.e., with

probability 1). For equality in (3.6), we need

[

QE(h)⊤QE(h)
]

i,j
=
√

p∗i (h)p∗j(h)hihjsisj = 0, ∀ i 6= j (3.7)

or equivalently,

p∗i (h)p∗j(h) = 0 ∨ s⊤i sj = 0, ∀ i 6= j, ∀ h (3.8)

Note that, this condition is readily satisfied if K ≤ N and the signature sequences

of all users are orthogonal, in which case the sum rate is achieved at a single point

rather than on a polygon (i.e., the dominant face of the corresponding polymatroid).

Therefore, let us focus on non-orthogonal sequences. Let s⊤i sj 6= 0 for i 6= j. Then,

for strict convexity of C, we need p∗i (h)p∗j(h) = 0 for almost all h, i.e., except over a

zero probability subset of channel states. In other words, the optimal power allocation

policy which achieves the sum capacity should dictate no more than one user transmit

simultaneously with non-zero probability. But by Theorem 2.1, this is true if only

if the signature sequences of all users are identical, which establishes that C is not

strictly convex unless all signature sequences are identical or orthogonal. 2

In proving Theorem 3.2, we made use of the properties of sum capacity achieving

power allocation policy, which is yet another justification of the importance of the
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treatment of the sum capacity in Chapter 2. Sum capacity is often considered as

a figure of merit for multiuser systems, because of the ease with which it can be

handled as an objective function, as opposed to the more difficult to handle arbitrary

rate tuples on the boundary of the capacity region. Note that, although in this section

we have characterized the capacity region for the fading CDMA with perfect CSI at

the transmitters and the receiver, we have not yet been able to solve for the optimal

power allocation policies that will achieve an arbitrary point on the capacity region as

we did in the symmetric sum capacity case. The problem of solving for such policies

is addressed in the next section.

3.3 Power Optimization for Weighted Sum of Rates

We have shown in Section 3.2 that the capacity region for fading CDMA is in gen-

eral not strictly convex, and there may be a flat portion on the boundary of the

capacity region, which coincides with the dominant face of the rate region corre-

sponding to the sum capacity maximizing power control policy. Now, note that, for

any given pair of non-negative numbers µ1 and µ2, there exists a point (or there

exist points) (R∗
1, R

∗
2) on the boundary of the capacity region, such that the line

µ1R1 + µ2R2 = C is tangent to the capacity region for some C = C∗(µ1, µ2), and

in fact C∗(µ1, µ2) is the maximum achievable value of µ1R1 + µ2R2 (Figure 3.2).

Therefore, the problem of finding the power control policy that corresponds to the

rate pair (R∗
1, R

∗
2) is equivalent to maximizing µ1R1 + µ2R2 subject to the average

power constraints. Here, µis can be interpreted as the priorities assigned to each
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Figure 3.2: Maximization of the rate tuples on the capacity region boundary.

user. The boundary of the capacity region can be traced by varying these priori-

ties µi. The desired rate pair (R∗
1, R

∗
2) is either the corner of one of the pentagons

specified by a power allocation policy as in (3.1), or it lies on one of the flat por-

tions. If it is a corner, its coordinates can be written as a function of the power

allocation policy using (3.1), and the maximization can be carried out. The case

where (R∗
1, R

∗
2) lies on one of the flat portions corresponds to either the rather easier

case where we want to maximize the sum capacity, which is solved in [13, 14], or the

trivial case where one of the µis is zero, and the problem reduces to a single user

problem.

Having introduced the reasoning in the simple two user case, we now define our

problem in the general K user case. Without loss of generality, assume µK > · · · >

µ1. Then, the optimum power allocation policy for {µi}K
i=1 is the solution to the
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maximization problem,

max
p(h)

1

2
Eh

[

µ1 log
∣

∣IN + σ−2SD(h)S⊤
∣

∣+
K
∑

i=2

(µi − µi−1) log
∣

∣IN + σ−2SEi
DEi

(h)S⊤
Ei

∣

∣

]

s.t. Eh[pi(h)] ≤ p̄i, i = 1, · · · , K

pi(h) ≥ 0, ∀ h, i = 1, · · · , K (3.9)

where S = [s1 · · · sK ], D(h) = diag[p1(h)h1, · · · , pK(h)hK ], Ei = {i, · · · , K} and

p(h) = [p1(h), · · · pK(h)]. Here, DEi
and SEi

refer to sub-matrices containing only

the received powers and signature sequences of the users in the subset Ei. Note that,

this is the fading CDMA version of equation (3) in [8], and is similar to equation (17)

for the scalar case in [7].

3.4 Generalized Iterative Waterfilling

Let us denote the objective function in (3.9) by Cµ(p1(h), · · · , pK(h)), where µ =

[µ1, · · · , µK ]. In order to solve (3.9), we first note that the objective function is

concave in the power vector p(h), and further, it is strictly concave in the individual

components pi(h) of p(h). The constraint set is convex (in fact, affine). Therefore,

the unique global solution to the maximization problem in (3.9) should satisfy the

extended KKT conditions, which can be shown to reduce to,

k
∑

i=1

µi − µi−1

aki(h) + pk(h)
≤ λk, ∀ h, k = 1, · · · , K (3.10)

where, we have defined µ0 , 0 for notational convenience. Here, aki(h) for i ≤ k ≤ K

is given by,
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aki(h) =
1

σ−2hks⊤k

(

IN + σ−2
∑K

j=i,j 6=k pj(h)hjsjs⊤j

)−1

sk

(3.11)

Note that, this quantity can be identified as the inverse of the SIR user k would

obtain at the output of an MMSE filter if it transmitted with unit power, when users

i, i + 1, · · · , K are active. The condition in (3.10) is satisfied with equality at some

h, if pk(h) > 0. Since the optimum power allocation policy for a given µ should

simultaneously satisfy all the conditions given by (3.10), and the optimum power of

each user k at each fading state h depends on the power allocations of all other users

at that state through aki(h), it is hard to analytically solve for the optimum policy

from the KKT conditions. Therefore, to proceed, we devise an iterative algorithm.

Consider optimizing the power of only user k over all channel states, given the powers

of all other users at all channel states,

pn+1
k = arg max

pk

Cµ

(

pn+1
1 , · · · , pn+1

k−1 , pk, p
n
k+1 · · · , pn

K

)

= arg max
pk

Ck
µ

(pk) (3.12)

where Ck
µ
(pk) denotes the first k terms in (3.9), i.e., i = 1, · · · , k, that contain con-

tributions from user k to Cµ(p(h)).

The convergence of such an algorithm has been proved for the case of sum capacity

in Chapter 2 for fading channels, and in [8] for non-fading channels. The objective

function here satisfies the same concavity and strict concavity properties as the sum

capacity, i.e., it is concave in the power vector p(h) and strictly concave in its individ-

ual components pk(h), and the constraint set is the same as in Chapter 2. Therefore,
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the proof in Section 2.2 immediately applies to the case of unequal µis here, and the

update (3.12) converges to the optimal power allocation by [37, Prop. 3.9]. Thus,

it is sufficient to consider separately finding the solution pk(h) that satisfies the kth

KKT condition in (3.10) for each user k, while keeping the powers of all other users

j 6= k as fixed and known quantities.

Let us concentrate on user k, and fix pj(h), j 6= k. It can be shown that, the

solution to (3.12) subject to the average power constraint on pk(h) should satisfy the

KKT condition for the single user problem,

k
∑

i=1

µi − µi−1

aki(h) + pk(h)
≤ λ̃k, ∀ h (3.13)

We note here that λ̃k is in general different from the Lagrange multiplier λk in (3.10),

since the powers we have fixed for the other users need not be the optimal powers.

Eventually, since the iterative algorithm converges to the optimal powers, we know

that λ̃k will converge to λk.

We will next argue how this condition can be interpreted as a “generalized” wa-

terfilling. First assume no power has yet been allocated to any channel state. Define

the inverse of the left hand side of (3.13) evaluated at pk(h) = 0 for all h by,

bk(h) =

(

k
∑

i=1

µi − µi−1

aki(h)

)−1

(3.14)

Then, sort bk(h) over all channel states h in increasing order. Since user k has to

satisfy its average power constraint, it has to put some power to a non-zero probability
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subset, say Ω, of all possible channel states. At the channel states where user k

transmits with positive power, (3.13) needs to be satisfied with equality. Let user k

start pouring some of its available power to the state which gives the lowest bk(h), say

h′. Next, pick another state h′′, such that bk(h
′) < bk(h

′′). User k starts transmitting

at h′′ only if (i) it has already poured some powers qk(h) to all states h such that

bk(h) < bk(h
′′), (ii) it still has some power left to allocate, and (iii) the already

allocated powers satisfy

k
∑

i=1

µi − µi−1

aki(h) + qk(h)
= b−1

k (h′′), ∀ h : bk(h) ≤ bk(h
′′) (3.15)

Before going any further, using the current construction, let us revisit the sum ca-

pacity case in Chapter 2, where µi, i = 1, · · · , K, are all equal to 1. In this case, from

(3.14), bk(h) = ak1(h), and it can be easily seen that the described procedure produces

the ordinary waterfilling solution; user k will pour its power over ak1(h) = bk(h), until

all the available power is used. The optimal power value at h is the difference between

the water level 1/λ̃k and the base level bk(h), whenever the difference is positive; it

is zero otherwise, i.e.,

pk(h) =

(

1

λ̃k

− bk(h)

)+

(3.16)

The main subtlety in solving for the optimal powers in the arbitrary µis case is

that, there are more than one terms that involve pk(h) on the left hand side of

(3.13), and thus the optimal pk(h) is no longer given by a nice expression such as

(3.16), but is rather the solution to a polynomial equation, obtained by equating the

denominators in (3.13). Therefore, the optimal power levels lose their traditional
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waterfilling interpretation. However, we can still see the procedure described here as

a type of waterfilling, as it gradually equalizes the base levels bk(h), and solves for the

power levels required for such equalization, hence the name “generalized” waterfilling.

Generalized waterfilling yields the optimum power allocation because of the fact

that by construction, the KKT conditions are satisfied when all average power is

used. To see this, let us denote the left hand side of (3.15) by L(h, qk(h)). We keep

increasing qk(h
′′) on the left hand side of (3.15) gradually. Letting pk(h) = qk(h) when

the solution qk(h) obtained from (3.15) satisfies the average power constraint, and

taking λ̃k , L(h, pk(h)), we see that the solution pk(h) satisfies the KKT conditions

and it is optimal.

In order to better visualize how the generalized waterfilling is performed, we

consider a simple example with K = 2 and with discrete joint channel states hi,

i = 1, · · · ,M . Without loss of generality, let us assume bk(h
1) < · · · < bk(h

M).

Figure 3.3 shows the generalized waterfilling procedure. The ordered values bk(h
i)

are illustrated in Figure 3.3(a). First, using (3.15), we solve for the amount of power

qk(h
1) that will level L(h1, qk(h

1)) and bk(h
2), so that the water level is bk(h

2), as

shown in Figure 3.3(b). It can be easily shown that qk(h
1) is the only non-negative

solution to a kth order polynomial equation, obtained from (3.15). In this particular

example, the available average power is not yet completely used in this first step,

so we repeat the same procedure at both h1 and h2, i.e., we solve for qk(h
1) and

qk(h
2) that will level L(h1, qk(h

1)), L(h2, qk(h
2)) and bk(h

3) (see Figure 3.3(c)). We

continue this procedure until we see that although the water levels can be made equal

at bk(h
t−1) while satisfying the average power constraint, it is not possible to equalize
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the water levels at bk(h
t), since the available average power falls short of the required

average power that is needed for such equalization. At this point, we know that the

final water level, i.e., the true value of 1/λ̃k that will satisfy the KKT conditions

together with qk(h
i) obtained from (3.15) should lie between bk(h

t−1) and bk(h
t), and

we can find it by searching between these two values until the qk(h
i), i = 1, · · · , t−1,

satisfy the average power constraint with equality. Figure 3.3(d) illustrates this last

step, and the final value of λ̃k that satisfies the KKT conditions.
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Figure 3.3: Illustration of the generalized waterfilling.

60



Note that, by letting µ1 = · · · = µK , we recover the traditional waterfilling solution

in [13, 14], since only the first term survives in the KKT conditions. On the other

hand, if we let si = 1 for i = 1, · · · , K, the generalized waterfilling algorithm solves

the resource allocation problem in [7] for scalar MAC.

3.5 Power Control with Limited Feedback

In Section 3.2, we have characterized the capacity region of the fading CDMA chan-

nel with the assumption of perfect channel state information at the transmitters and

the receiver. This scenario is well suited for the theoretical treatment of the CDMA

system, and in fact gives the utmost limit one can achieve in terms of reliable com-

munication rates. On the other hand, perfect knowledge of the channel state at

the transmitter is not a practical assumption, since it would require an infinite rate

feedback link. The question that arises naturally is, should the side information be

perfectly accurate in order for power control to be an effective means of increasing

the capacity? Here, we will consider the power control problem from a more practical

point of view, and demonstrate the effects of limited feedback on the set of achievable

rates.

In particular, we will now consider the fact that the feedback link from the receiver

to the transmitters is limited in rate, and therefore only part of the information that

is available to the receiver can be communicated back to the transmitters to aid

the resource allocation. On the other hand, we still assume that the feedback is

instantaneous and error free.
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Let us assume that the feedback link has the limitation that it allows reliable

transmission of at most L bits per user. Then the receiver can inform the transmitter

which one of up to 2L transmit power levels to use, depending on the observed channel

state. This requires a mapping from the channel state space to a discrete set of power

levels, i.e., the problem of maximizing the weighted sum of rates as a function of a

finite number of transmit power levels, can be formulated as a vector quantization

problem

max
2L
∑

j=1

∫

γj(h)

K
∑

i=1

(µi − µi−1) log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

k=i

pk(j)hksks
⊤
k

∣

∣

∣

∣

∣

f(h)dh

s.t.
2L
∑

j=1

∫

γj(h)

pk(j)f(h)dh = p̄k (3.17)

where the channel state space, say R
K
+ , is partitioned into 2L subsets γj(h), and each

of these partitions are mapped onto the element pk(j) from the codebook {pk(1), · · · ,

pk(2
L)}. It is often a very tedious, if not impossible, task to find an optimal vector

quantizer analytically for a given probability distribution of the quantizer input, even

in the case of the traditional quantization where the goal is to represent a random

vector as closely as possible. In fact, even much easier scalar quantization problems do

not lend themselves to such solutions. On the other hand, conditions for optimality of

a quantizer lead to algorithmic solutions that yield “good” quantizers, which achieve

local optima to the minimization problem [47]. Probably the most popular such

algorithm is the Lloyd method which iterates between the partitioning and codebook

selection [47].
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It is possible to use the generalized Lloyd algorithm for vector quantization [47]

to solve (3.17), by suitably defining an unconventional “distortion” function as the

negative of the Lagrangian of the optimization problem in (3.17). However, this

approach is still not guaranteed to obtain an absolutely optimal quantizer. In what

follows, we will simplify the problem by limiting ourselves to scalar quantizers, where

the goal is to represent the channel state, or optimal power level of each user as closely

as possible. Namely, we will consider two settings: (i) a quantized version of the CSI

is fed back to the transmitters and the optimal power allocation is determined at the

transmitters, and (ii) the optimal power levels are computed at the receiver, and are

then quantized and fed back to the transmitters.

For the first case, let the quantizer Qi(hi) be defined by the codebook Ĥi = {ĥ1
i <

· · · < ĥ2L

i }, and the partition Wi = {0 = w0
i < w1

i < · · · < w2L−1
i < · · · < w2L

i = ∞},

such that

Qi(hi) = ĥj
i , wj−1

i ≤ hi < wj
i , j = 1, · · · , 2L, i = 1, · · · , K. (3.18)

The quantization of a random variable is often performed subject to a fidelity criterion.

In this particular case we consider the widely used mean square distortion as the

fidelity criterion,

D(Q(hi)) = E
[

(hi − ĥi)
2
]

, i = 1, · · · , K. (3.19)

and we use Lloyd’s algorithm [47, 48] to perform the quantization of the variables
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of interest. Note that, although more advanced quantization techniques, including

vector quantization, could be used to more accurately represent the original random

variables, our purpose is to demonstrate how the power control performs for systems

with quantized feedback when compared to ones with perfect (infinite precision) feed-

back, rather than finding a powerful quantizer. For our purposes, we will see that

Lloyd’s algorithm with the mean square distortion gives satisfactory enough results

in terms of getting close to the perfect feedback capacity.

To avoid extra notation, we will assume that Qi(hi) defined in (3.18) is a good

quantizer obtained by running Lloyd’s algorithm. When the channel state h is mea-

sured at the receiver, its components are quantized using Qi(hi), i = 1, · · · , K, and

fed back to the transmitters. Then, for given priorities µi, the transmitters solve

the optimal power allocation problem for the set of discrete channel states ĥj
i using

the generalized waterfilling algorithm, to get p∗i (ĥ), which yields a corresponding rate

tuple R̂ given by the expectations in (3.1). One should note that the expectation in

(3.1) is still with respect to the actual (unquantized) channel state h.

For the second case, the quantizer for the power levels is similarly defined with

the codebook P̂i = {p̂1
i < · · · < p̂2L

i }, and the partition vi = {0 = v0
i < v1

i < · · · <

v2L−1
i < · · · < v2L

i = ∞}, such that

Qi(pi(h)) = p̂j
i , vj−1

i ≤ pi(h) < vj
i , j = 1, · · · , 2L, i = 1, · · · , K. (3.20)

The mean square distortion function is also defined accordingly. Now, the re-

ceiver first uses the generalized waterfilling algorithm to obtain the optimal power
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levels p∗i (h) for given priorities, then quantizes them using Qi(p
∗
i (h)), which is the

quantizer obtained by the Lloyd’s algorithm, and sends the quantized power level p̂∗i ,

to transmitter i, for i = 1, · · · , K. These power levels can be used by the transmitters

without the knowledge of the channel state, to obtain the rate tuple
ˆ̂
R which can be

computed again by taking the expectation in (3.1).

The two feedback approaches differ in that while the total amount of receiver

feedback is the same, the amount of feedback bits required by the transmitters is

clearly different, since the transmitters need all KL feedback bits in case (i), whereas

they need only their own power level, i.e., L bits, in case (ii). Also, the rate tuples R̂

and
ˆ̂
R are in general different. The corresponding achievable rate regions are given

in the following section.

3.6 Simulation Results

In this section, we present some simulation results for the generalized iterative water-

filling algorithm. In our simulations, we pick the number of users K = 2, so that our

results such as the capacity regions and the optimum power allocations can be easily

visualized. The processing gain is chosen to be N = 2, the noise variance is σ2 = 1,

and both users have an average power constraint equal to 1.

First, in order to observe the effect of the priorities µi on the optimum power

allocation, we plot the optimum power allocation policies for both users for two

different sets of (µ1, µ2) values. We fix the signature sequences of the users to be

s1 = [1/
√

2 1/
√

2]⊤, and s2 = [1 0]⊤. The channel states h1 and h2 are chosen
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to be independent uniform random variables, each taking values from the discrete

set {0.2:0.2:2}. Figures 3.4(a) and 3.4(b) correspond to the sum capacity maximizing

power control policies, i.e., to (µ1, µ2) = (1, 1). In each figure, the height of the surface

corresponds to the power allocated to each channel state. We see that the two users

perform simultaneous waterfilling, which was also observed in [13, 14]. Here, each of

the users tend to transmit with less power over the channel states where the other user

is stronger, and due to the symmetry of the problem, the power allocation policies

are symmetric. When we choose unequal priorities (µ1, µ2) = (1, 2), we observe

in Figures 3.4(c) and 3.4(d) that the power allocation for user 1 does not change

significantly, but user 2 pours more power to channel states where it transmitted

with considerably less power in the symmetric priorities case. If we increase µ2 even

further, and solve for the case when (µ1, µ2) = (1, 10), we see in Figure 3.4(f) that the

power allocation policy of user 2 converges nearly to single user waterfilling. Since

the priority of user 1 is much less than that of user 2, user 2, while trying to maximize

the weighted sum of rates, acts as if it is alone in the system in allocating its power.

The power allocation of user 1, given in Figure 3.4(e), is not significantly different

from the previous two cases.

In Figure 3.5, we give the capacity region of the fading CDMA channel, for differ-

ent values of correlations between the signature sequences. The regions are formed by

finding the optimal power allocation policies for a large set of (µ1, µ2) values, and then

by using these allocation policies to compute the corresponding (R1, R2) pairs. The

case when the correlation is ρ = 1 corresponds to the identical signature sequences

case, in which case the boundary of the capacity region is strictly convex, and each
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point on the surface can be achieved by a power control policy, without timesharing.

Note that, this setting also covers the scalar MAC case in [7], and the properties

derived in [7] for the capacity region are observed here. When we decrease the cor-

relation between the sequences, we begin to observe a flat portion on the capacity

region, which agrees with the findings of [14]. As we further decrease the correla-

tion, eventually the sequences become orthogonal and the capacity region becomes

the rectangular region whose boundaries are single user limits, as expected.

In Figure 3.6, we show an example of the convergence of the generalized iterative

waterfilling algorithm for the simple system considered here; the powers converge after

only three iterations, and the optimum weighted capacity value is almost attained

after one round of iterations.

We now turn our attention to the systems in Section 3.5, and investigate the

achievable rates for systems with limited feedback. Here, we consider i.i.d. Rayleigh

channel fading (exponential channel states hi) with mean 0.63. The signature se-

quences are fixed with correlation equal to ρ = 0.95.

The achievable rates for systems with 1, 2 and 3-bit quantization of each hi are

illustrated in Figure 3.7. We observe that, even with the very low feedback rate of

1-bit, the achievable rate region is remarkably improved when compared to a system

with no feedback, thanks to the possibility of employing power control. We further

see that, the amount of feedback, though it enlarges the region of achievable rates,

is not very significant in terms of improving the set of achievable rates. We conclude

that the feedback cost of power control may be kept to a minimum 1-bit per user,

i.e., a total of K bits, while still achieving much higher information rates than no
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(a) Power allocation for user 1, µ1 = µ2 = 1.
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(b) Power allocation for user 2, µ1 = µ2 = 1.
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(c) Power allocation for user 1, µ1 = 1, µ2 = 2.
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(d) Power allocation for user 2, µ1 = 1, µ2 = 2.
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(e) Power allocation for user 1, µ1 = 1, µ2 = 10.
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(f) Power allocation for user 2, µ1 = 1, µ2 = 10.

Figure 3.4: Power distributions for different values of priorities.
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Figure 3.5: Capacity region of a two user fading CDMA channel for several correlation
values among the signature sequences.
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Figure 3.6: Convergence of the generalized iterative waterfilling algorithm.

power control, in fact, rates very close to the perfect feedback capacity region. As

discussed in Section 3.5, the set of achievable rates may further be improved by using

more advanced quantization techniques.
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Figure 3.7: Achievable rates with quantized channel state feedback.
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Figure 3.8: Achievable rates with quantized power level feedback.

For the case of directly feeding back a quantized power level, the achievable rates

are shown in Figure 3.8. We observe that while 1-bit feedback gives similar achiev-
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able rates to those for channel state feedback, by 2-bit feedback we obtain a much

more significant improvement when compared to the channel state feedback. In fact,

by employing only four power levels, i.e., 2-bit feedback, it is possible to get very

close to the capacity region with perfect feedback. Both feedback schemes show that

the significant performance gains due to power control do not require very accurate

feedback information, which is very promising in terms of possible implementation

of the developed algorithm in practical systems. We would like to note that these

results agree with earlier findings regarding the capacity of single user channels with

limited CSI feedback [49], and the throughput of time varying MACs with limited CSI

feedback [50], which also demonstrated that the capacity does not depend strongly

on the accuracy of the CSI feedback.

3.7 Summary and Conclusions

We provided the capacity region for a power controlled fading CDMA system, and

proved that unless all users have orthogonal or identical sequences, it has a flat portion

on which the sum capacity is maximized; i.e., it is not strictly convex. This yields the

important result that, sum capacity may be achieved by infinitely many rate tuples,

implying that one has flexibility in choosing the individual rates of the users while

keeping the sum capacity constant at its maximum.

We have characterized the power allocation policies that achieve arbitrary rate

tuples on the boundary of the capacity region of a fading CDMA channel. The

optimal power allocation policy for a given set of priorities µi is the joint solution
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to the extended KKT conditions for all users. Since the KKT inequalities appear

difficult to solve analytically, we have provided a one-user-at-a-time iterative power

allocation algorithm that converges to the optimum solution. We showed that, each

iteration of this algorithm corresponds to solving for the power levels of the user of

interest at all fading states, so that the power allocation satisfies the single-user KKT

conditions. We have also provided a “generalized” waterfilling interpretation for the

power allocation procedure as it operates by gradually equating the levels of “water”

poured on top of certain base levels, which are functions of the channel states, power

levels of other users, and the priorities µi. We then investigated the effect of limited

feedback on the capacity region of the CDMA channel. We demonstrated that, even

with very low rate feedback, rates very close to the boundary of the capacity region

are achievable.

The results of this Chapter were published in [14–16], and have been submitted

for publication in [17].
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Chapter 4

Jointly Optimal Power and Signature Sequence Allocation

for Fading CDMA

4.1 Introduction

So far, we have considered CDMA systems where the signature sequences assigned to

the users are fixed throughout the transmission, and we used the CSI to the advantage

of the network capacity only through allocating the powers. The sum capacity of a

CDMA network can also be optimized as a function of the signature sequences. When

each user has an average power constraint, and there is no fading in the system, [18]

shows that when the number of users is less than or equal to the processing gain,

the optimal strategy is to allocate orthogonal signature sequences to all users, and

when the number of users is greater than the processing gain, with all users having

the same average power constraints, the optimal strategy is to allocate Welch Bound

Equality (WBE) [19] sequences. Reference [20] generalizes [18] to arbitrary (unequal)

average power constraints, and gives the optimal signature sequence allocation as a

function of the power constraints of the users, by making use of some results from

the theory of majorization in matrix analysis [51, 52]. Specifically, for the case in
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which the number of users is greater than the processing gain, when a user has a

“relatively larger” power constraint then the others, it is called “oversized”, and such

users are allocated orthogonal signature sequences; whereas the “non-oversized” users

are allocated the so-called Generalized Welch-Bound-Equality (GWBE) sequences.

In this chapter, we present the solution to the problem of joint power and signature

sequence optimization in order to maximize the ergodic sum capacity of a fading

CDMA system. Specifically, we adapt the set of signature sequences and transmit

powers of all users as a function of the CSI, in order to maximize the ergodic sum

capacity. At each fading state, for any given arbitrary power allocation, results of [20]

can be used to allocate the optimal sequences. Among those power allocations, with

signature sequences chosen optimally, we find the best power allocation strategy.

We show that the optimal strategy is still a waterfilling strategy for each user,

and very strikingly, at each fading state, that strategy dictates that we allocate (at

most) N orthogonal signature sequences to the users with best (at most) N channel

states (scaled by a factor as in [6]). Moreover, the other users with worse channel

states than the users with orthogonal sequences do not transmit at those particular

channel states. This means that there are no users in the system which are allocated

GWBE sequences and are yet transmitting with nonzero powers. Thus, in contrast to

signature sequence optimization for non-fading channels, GWBE sequences are never

used in transmissions; more precisely, they are used only with zero probability.

Our solution resembles [6] in the sense that there is an ordering of channel states

that determines which users will transmit, but it also resembles the solution in [5]

in that once we know which users will transmit at each channel state, all users will
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choose their powers as if they are alone in the system, i.e., they will perform single

user waterfilling over favorable regions of the channel state space. This result shows

that, when we have the opportunity to control both the signature sequences and the

powers of the users, the users completely avoid each other, i.e., certain groups of

users transmit on disjoint sets of channel states, and within each group of users that

transmit at the same channel state, users place themselves orthogonal to each other

in the signature sequence space, thus avoiding any possible interference.

We also provide an iterative algorithm that is guaranteed to converge to the

optimal power and signature sequence allocation. The algorithm performs a one-

user-at-a-time waterfilling, and converges to the optimum solution described above.

Throughout this thesis, we have been assuming symbol synchronism for the CDMA

system under consideration. In Section 4.4, we relax this assumption to consider sym-

bol asynchronous but chip synchronous systems. We show that the asynchrony does

not lead to a loss in the sum capacity, nor does it lead to a change in the optimal

power allocation policy from the synchronous case. The signature sequence adapta-

tion policy jointly optimal with this power allocation however is updated, using the

results from [24].

Finally, we investigate the improvements in sum capacity provided by the use of

multiple antennas at the receiver. We provide an algorithm that iterates between

what is so called the eigen-update for sequence optimization [53] and the optimal

one-user-at-a-time power update for fixed sequences of Chapter 2. The spatial diver-

sity provided by the antennas at the receiver together with the flexibility to choose

the transmit directions by adjusting the signature sequences and powers leads to
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remarkable gains in the capacity.

4.2 Joint Signature Sequence and Power Allocation

For a given set of signature sequences and a fixed set of channel gains, h, the sum

capacity Csum(h, p̄,S) is [9],

Csum(h, p̄,S) =
1

2
log

∣

∣

∣

∣

∣

IN + σ−2

K
∑

i=1

hip̄isis
⊤
i

∣

∣

∣

∣

∣

(4.1)

where p̄i is the average power of user i, p̄ = [p̄1, · · · , p̄K ], and S = [s1, · · · , sK ].

To maximize the above capacity for that particular h, one can choose the signature

sequences of the users for a given set of power constraints. An equivalent problem is

solved in [20], in the no-fading case, i.e., hi = 1, for all i.

In the presence of fading, if the channel state is modelled as a random vector,

the quantity Csum(h, p̄,S) is random as well, and the ergodic sum capacity is found

as the expected value of Csum(h, p̄,S). Instead of keeping the transmit power of

user i fixed to p̄i as in (4.1), we can choose the transmit powers of the users pi(h),

i = 1, · · · , K, as a function of the channel state with the aim of maximizing the

ergodic sum capacity of the system subject to average transmit power constraints for

all users. Similarly, we can choose the signature sequences S to be a function of the

channel state as well; let us denote it by S(h) to show the dependence on the channel

state. Therefore our problem is to solve for the jointly optimum transmit powers

and signature sequences as a function of the channel state in order to maximize the

ergodic sum capacity of the system in the presence of fading. The problem can be
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stated as,

max
p(h),S(h)

Eh

[

log

∣

∣

∣

∣

∣

IN +
K
∑

i=1

hipi(h)

σ2
si(h)si(h)⊤

∣

∣

∣

∣

∣

]

s.t.Eh [pi(h)| = p̄i, pi(h) ≥ 0 (4.2)

where the expectation is taken with respect to the joint probability density function

f(h) of the channel states.

In order to jointly optimize the powers and signature sequences, we first fix power

distributions of all users over all fading states, and find the set of oversized users at

each channel state according to the rule [20]

pk(h) >

∑K
i=1 pi(h)1pk(h)>pi(h)

(N −∑K
i=1 1pk(h)≤pi(h))

(4.3)

Then, the corresponding optimal signature sequence set at every channel state

will consist of a combination of orthogonal and GWBE sequences [20]. This is due to

the fact that, the signature sequences at a fading state h can be chosen independently

of the signature sequences at any other state, since once the powers are fixed, there

are no constraints relating S(h) to S(h̄) for h 6= h̄. That is, we can freely choose a

sequence set at a given state h without changing the contribution to the sum capacity

of another state h̄; this clearly is not true for the power allocation, since once we

allocate a power level for a given state h, we have less power left to allocate to other

states, and overall capacity is affected. Since the optimum signature sequences at each

channel state depend only on the powers p(h) and the channel state h, we can express
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the capacity at each channel state only as a function of the powers, and optimize the

ergodic capacity in terms of the power allocation. Let us define the signature sequence

optimized sum capacity at channel state h for a given power control policy p(h) by

Copt(h,p(h)) , max
S(h)

Csum(h,p(h),S(h)) (4.4)

where Csum(h,p(h),S(h)) is the argument of the expectation in the objective func-

tion of (4.2), i.e., it is the function in (4.1) where p̄ is replaced by p(h) and S is

replaced by S(h). For a fixed h, it can be shown using majorization theory that

Copt(h,p(h)) is a concave function of the power vector at channel state h, p(h) [21,

Proposition 2.2]. Then, the problem in (4.2) can be written only in terms of the

powers as

max
p(h)

Eh

[

Copt(h,p(h))
]

s.t.Eh [pi(h)] = p̄i, pi(h) ≥ 0 (4.5)

First consider the case when K ≤ N . For any fixed channel state, the optimal

choice of signature sequences for a given power control policy p(h) is an orthogonal

set [18,20]. Noting that the received power levels are pi(h)hi, (4.5) takes the form,

max
p(h)

Eh

[

K
∑

i=1

log

(

1 +
pi(h)hi

σ2

)

]

s.t.Eh [pi(h)] = p̄i, (4.6)
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which is equivalent to solving K independent Goldsmith-Varaiya problems [5] (see

also [13]), the solution to which is a single user waterfilling for each user. More

precisely, the problem in (4.6) is a concave maximization over affine sets of constraints,

therefore the optimal solution p∗(h) is the unique solution satisfying the Karush-

Kuhn-Tucker (KKT) conditions, and is given by,

p∗i (h) =

(

1

λi

− σ2

hi

)+

, i = 1, · · · , K (4.7)

where λi is solved by plugging (4.7) into (4.6).

One remarkable observation is that in obtaining Copt(h,p(h)), it is possible to

adopt a channel non-adaptive signature sequence allocation policy, i.e., each user can

be assigned a designated signature sequence, which it can use at all channel states, as

long as the signature sequences in this set are orthogonal. A channel adaptive scheme

will also perform equally well as long as the signature sequences we choose at each h

are from an orthogonal set.

When K > N , it has been shown in [20], for a non-fading channel, that given

the power constraints of all users, one can group the users into two sets L and L̄, of

oversized and non-oversized users, respectively. Users i ∈ L are assigned orthogonal

sequences, and users i ∈ L̄ are assigned GWBE sequences. For a channel with

fading, at a certain channel state h, and for a certain arbitrary power distribution

of users which assigns powers p1, · · · , pK to channel state h, let us define the matrix

D , diag(p1h1, · · · , pKhK), and define µi to be the eigenvalues of the matrix SDS⊤.

Then the signature sequences that maximize the sum capacity for any fixed h satisfy
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[54],

SDS⊤si = µisi, i = 1, · · · , K (4.8)

clearly with repetitions of some of the µis (since there are only N eigenvalues of

SDS⊤), where the optimal µis are given by [20],

µi(h) =















∑

j∈L̄(h) pjhj

N − |L(h)| , i ∈ L̄(h)

pihi, i ∈ L(h)

(4.9)

In the fading case with channel adaptive powers, as suggested by the results

in [5,6,13], it is likely that some users will have powers equal to zero at some channel

states, and they will not contribute to Csum at those channel states. Although the

concept of oversized users is defined for users with nonzero average power constraints,

since users which are allocated zero power at state h will not contribute to the sum

capacity, we can add them to the set of non-oversized users at channel state h, L̄(h),

and we can assume that we assign arbitrary sequences for those users without changing

the solution. Note however that, while finding the set of oversized users, we will

disregard the users with zero power. Using the optimum eigenvalue assignment in

(4.9) at each state, the objective function of the problem (4.5) can be expressed in

the alternative form,

Eh





∑

i∈L(h)

log

(

1 +
pi(h)hi

σ2

)

+ (N − |L(h)|) log

(

1 +

∑

i∈L̄(h) pi(h)hi

σ2(N − |L(h)|)

)



 (4.10)

For a given channel state h, let the set of users that will transmit with non-zero
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powers be K̄(h). Then the number of users in K̄(h) cannot exceed N , as stated by

the following theorem.

Theorem 4.1 Let K̄(h) be a subset of {1, · · · , K}, such that ∀i ∈ K̄(h), p∗i (h) > 0,

where p∗(h) is the maximizer of (4.10). Then, |K̄(h)| ≤ N , almost surely.

Proof: By concavity of Copt(h,p(h)), it is clear that the function in (4.10) is concave,

and the maximization in (4.5) is over an affine set of constraints. Therefore, a power

vector p∗(h) achieves the global optimum of the maximization problem if and only if

it satisfies the KKT conditions. Then, writing the KKT conditions for the objective

function in (4.10), it is easy to show that

hi

µi(h) + σ2
≤ λi, ∀h (4.11)

where µi(h) is given by (4.9), and equality holds if pi(h) > 0. Now, let us assume that

the number of non-zero components in p∗(h) is |K̄(h)| > N , for a given h. Then,

some users must share some of the available dimensions, i.e., not all users can be

made orthogonal to each other. In fact, we can find at most N −1 sequences that are

orthogonal to all other sequences in the system, or equivalently, at least |K̄(h)|−N+1

users will have the same µi =
∑

j∈L̄(h) hjpj/(N − |L(h)|). Then, substituting this into

(4.11), we get hi/λi = hj/λj for i 6= j, i, j ∈ K̄(h) for at least |K̄(h)| −N + 1 users.

Note that as the channel fading is assumed to be a continuous random variable, this

event has zero probability, and at most one user with GWBE sequences (one with

highest hi/λi ratio, as in [6]) may transmit, with probability 1. But this contradicts
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the assumption that |K̄(h)| > N , which establishes our main result, i.e., |K̄(h)| ≤ N

almost surely. 2

This result may be viewed as a generalization of [6] to a vector channel with a unit

rank constraint on the covariance matrices of the inputs; [6] showed that in scalar

MAC (i.e., when N = 1), at most one user may transmit at a channel state with

probability 1. An important implication of Theorem 4.1 is that, since the optimal

power allocation dictates that at most N users transmit with positive powers at any

given channel state, orthogonal sequences should be assigned to those users that are

transmitting with positive powers. That is, although we allowed for allocating GWBE

sequences to some of the users, the solution implies that there is at most one such

user, and the problem reduces to the orthogonal case. The optimal power allocation

is again single user waterfilling, similar to the solution given in (4.7), i.e.,

p∗i (h) =















(

1
λi
− σ2

hi

)

, i ∈ K̄(h)

0, otherwise

(4.12)

Here, one needs to be careful about the transmit regions. Unlike the case where the

actual number of usersK ≤ N , the users in the set K̄(h) change with h, thus a channel

adaptive allocation of the orthogonal sequences is necessary. Our convention is, we

assign a sequence from an orthogonal set to a user, wherever its power is positive.

To specify the optimal power allocation completely, let us define γi = hi/λi. Then,

the probability that γi = γj, for i 6= j is zero. Therefore, we can always find a unique

order statistics {γ[i]}K
i=1 such that γ[1] > · · · > γ[K], for each given h. Let us now place
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σ2 in that ordering, assuming that at least one of the γ[i]s is larger than σ2. Define

γ[K+1] = 0. Then, for some n ∈ {1, · · · , K}, let

γ[1] ≥ · · · ≥ γ[n] > σ2 ≥ γ[n+1] ≥ · · · ≥ γ[K+1] (4.13)

where the equalities are included for the sake of consistency of the indices, and do

not affect the solution (note the strict inequality just before σ2).

First, let n ≤ N . Then, we see that (4.12) gives positive powers for all n users,

and thus all n users with highest γis will transmit with the non-zero powers given in

(4.12). When n > N , there are more than N users satisfying the positivity constraints

γi > σ2. However, we know from our derivation that only the user with the highest γi

from the set we intend to assign GWBE sequences may transmit. Therefore, a total

of N users with the highest γis transmit at this channel state.

Finally, we can summarize the jointly optimal power and signature sequence allo-

cation policy as,

p∗i (h) =















(

1
λi

− σ2

hi

)

, iff i ∈ Ω

0, otherwise

s∗i (h)⊤s∗j(h) = 0, i 6= j, ∀ i, j ∈ Ω

Ω =
{

i : γ[i] > σ2, i ≤ min{K,N}
}

(4.14)
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4.3 Iterative Power and Sequence Optimization

We found in the previous section that the optimal power control strategy is a water-

filling over some favorable channel states for each user. However, in order to obtain

the optimal power levels one should also compute the Lagrange multipliers λi, from

the average power constraints. It turns out that the power allocation of each user

still depends in a complicated fashion to those of the other users through these λi. In

this section we provide an iterative method to obtain the jointly optimal power and

signature sequence allocation, and hence the λi.

We have already shown in Section 2.2 that for fixed signature sequences S, the

optimal single-user update that maximizes the sum capacity as a function of pk(h) is

given by,

pk(h,S) =

(

1

λk

− 1

hks⊤k A−1
k sk

)+

(4.15)

where the interference covariance matrix Ak, defined previously in (2.10), can be

rewritten as,

Ak = σ2IN +
∑

i6=k

hipi(h)sis
⊤
i

= σ2I + SDS⊤ − hkpk(h)sks
⊤
k (4.16)

We can find and fix the optimal signature sequences at each state for a given power

allocation using results of [20]. Then, plugging these sequences in (4.16), multiply-

ing both sides by the optimal signature sequence s∗k, and noting that the signature

sequences that maximize the sum capacity for a fixed set of power constraints satisfy
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(4.8), we get

Aks
∗
k = (σ2 + µk − hkpk)s

∗
k (4.17)

where µk are given by (4.9). Therefore,

s∗⊤k A−1
k s∗k =

1

σ2 + µk − hkpk

(4.18)

This shows that, we can represent the base level for the waterfilling in (4.15) as a

function of the power levels in the previous iteration. Substituting this in (4.15), we

get the optimal power allocation at the n+ 1st step, pn+1
k (h) for user k, with optimal

sequences and fixed powers {pi(h)}i6=k from the previous iteration

pn+1
k (h) =

(

1

λn+1
k

− σ2 + µn
k(h) − hkp

n
k(h)

hk

)+

, ∀h (4.19)

where we use {pn+1
1 (h), · · · , pn+1

k−1(h), pn
k(h), · · · , pn

K(h)} to compute µn
k(h). Combin-

ing this with (4.9) gives us the power update at each step. It is easy to observe that,

once the eigenvalues µn
k(h) are determined using the power levels from the previous

iteration, we can use (4.19) to solve for kth user’s power by waterfilling. Note that,

the Lagrange multiplier λn+1
k is chosen to satisfy the average power constraint of user

k at each iteration, and can be obtained by plugging (4.19) into the constraint in

(2.5). The waterfilling algorithm automatically obtains the value of λn+1
k as it is the

inverse of the “water level”.

The proposed algorithm may be interpreted in two ways. First, it may be seen

as an iteration from a set of powers to another set of powers as given by (4.19).
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Therefore, one may run this algorithm starting with an arbitrary power distribution,

to obtain the capacity maximizing power distribution when the algorithm converges.

The signature sequences may then be assigned to the users after the algorithm con-

verges: at each channel state, the users that have non-zero powers (there will be at

most N such users) are assigned signature sequences from an orthogonal set. Sec-

ond, the algorithm may be seen as an iteration from powers to signature sequences,

and then back to powers again. Specifically, for a given set of powers, the optimal

sequences may be found using (4.8) and (4.9), i.e., as in [20]; corresponding to these

sequences, base levels for the waterfilling in (4.15) can be computed using (4.17) and

(2.18), and new powers may be found using (4.15) as in Section 2.2.

We will now show that (4.19) and equivalently the sequential signature sequence

and power update algorithm indeed converges to the global optimum of the sum

capacity function. To see this, first observe that for fixed signature sequences, the

update (4.15) is the best one-user-at-a-time power update and is guaranteed to give a

non-decreasing sequence of sum capacity values. Similarly, for fixed powers, the sig-

nature sequence update will increase (or keep constant) the value of the sum capacity.

The sum capacity is upper bounded, therefore it is guaranteed that the sequence of

non-decreasing sum capacity values obtained through these iterations have a limit.

Moreover, the algorithm terminates if and only if the update (4.19) yields a fixed

point p(h). Since the fixed point is characterized by pn+1 = pn, it is easy to see

that the fixed point of the update (4.19) actually satisfies the KKT conditions for

our original problem. Since the convergence point p(h) satisfies the KKT conditions,

it achieves the global optimum of the sum capacity, proving the convergence of the
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sequential algorithm.

Note that we have incorporated the eigenvalues of SDS⊤ in the power iteration

(4.19) rather than including the signature sequences explicitly. This implementation

is very useful, since it does not require us to compute the signature sequences at

intermediate steps. On the other hand, the development in (4.15)-(4.19) makes a

subtle point transparent, namely the problem of what sequences to assign to users

with zero powers at each iteration, if we were to compute the signature sequences

at each step. We obtain (4.17) from (4.16) by replacing s∗k by an eigenvector of the

matrix SDS⊤ corresponding to the eigenvalue µk, even for the users with zero powers.

Clearly, for each round of iterations (say n), it is not important what signature

sequences are assigned to users with zero powers, as this choice will not reflect on the

sum capacity value. Therefore, any update for the signature sequences of users with

zero powers would maintain the non-decreasing nature of the sum capacity with each

sequence update. Although this choice of sequences might affect the power levels in

the next round of iterations, the convergence of the algorithm is still maintained, even

if we allocate arbitrary signature sequences to users with zero powers, instead of the

eigenvectors of SDS⊤. This is due to the fact that even though the sequence of sum

capacity values will follow a different path, at the fixed point they will still satisfy

the KKT conditions.

Lastly, it is useful to point out that, although the power allocation policy that

maximizes the sum capacity is unique, the signature sequence selection that is jointly

optimal with this power allocation is not, for two reasons: first, because of the arbi-

trariness of the optimal sequences for users with zero powers; and second, because of
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the fact that even for users with non-zero powers, there are infinitely many sets of

orthogonal sequences.

4.4 Joint Power and Sequence Optimization for Asynchronous CDMA

For the CDMA systems of consideration in this thesis, we have so far made the

assumption of symbol synchrony, meaning that the symbols, which are modulated

by the corresponding signature waveforms at each of the transmitters, are aligned

at the receiver. This is a common simplifying assumption for information theoretic

analysis of wireless systems. On the other hand, even if the transmitters’ clocks

are synchronized so as to provide synchronous transmissions, the presence of various

delays on different paths in a typical wireless channel is bound to shift in time the

transmitted signals from each user by different amounts. Therefore, the analysis of

asynchronous systems is of practical importance.

In this section, we consider a symbol asynchronous, but chip synchronous CDMA

channel, where the chip waveform is identical for all users. This special type of

communication scheme is named direct sequence CDMA (DS-CDMA), which is widely

employed in practice [12]. The continuous time model for the signal received as a

result of the transmission of M symbols is given by

r(t) =
M
∑

k=1

K
∑

i=1

√

pihi[k]bi[k]si(t− ckTc − kT ) + n(t) (4.20)

where, as before, we assume that the channel state hi[k] remains constant over the

kth symbol interval, and the delay between the users are integer multiples of the
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chip length Tc, i.e., ck are integers. Note that, as in other related work, i.e., [24, 55],

this assumption is made in order to make the analysis tractable; in practice, the

delays between the users are in general arbitrary. The systems with arbitrary delay

profiles are called totally asynchronous systems, and in fact, for such systems, even

the signature sequence optimization alone is still an open problem. Moreover, in those

cases, the choice of the chip waveform as well as the modulating signature sequence

is a factor in determining the capacity.

For the sake of simplicity of the presentation, let us assume that we have rear-

ranged the order of occurrence of the fading values in time, so that each fading level

h is observed in a single block of mh symbols. By the stationarity and ergodicity

assumption, limM→∞mh/M = f(h), and time averages converge to statistical aver-

ages. Upon projection of the received signal onto shifted versions of the chip waveform

common to all the users, the received signal at each channel state h can be expressed

as an mh ×N vector [24],

r =
K
∑

i=1

√

pihiSibi + n (4.21)

where Si is the signature sequence matrix of user i defined as [24]
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Here sL
i and sR

i denote the left and right signature sequences for user i padded with

zeros, forming N -vectors, i.e.,

sL
i = [0, · · · , 0, si1, si2, · · · , sN−ck

]⊤

sR
i = [sN−ck+1, sN−ck+2, · · · , sN , 0, · · · , 0]⊤ (4.23)

and, bi is an mh × 1 vector of unit energy input symbols. For a given channel state,

and fixed power levels, the problem of optimally selecting the signature sequences has

been addressed in [24], where it was shown that the sum capacity of the sequence

optimized symbol asynchronous CDMA channel is exactly the same as that of the

symbol synchronous channel, which is given by,

∑

i∈L(h)

log

(

1 +
pihi

σ2

)

+ (N − |L(h)|) log

(

1 +

∑

i∈L̄(h) pihi

σ2(N − |L(h)|)

)

(4.24)

where L(h) and L̄(h) are the sets of oversized and non-oversized users respectively,

defined exactly as in [20] for the symbol synchronous case, only as a function of the

powers. The signature sequences that achieve (4.24) are shown to satisfy [24]

1. For all k ∈ L(h) and j 6= k

sL
k

⊤
sL
j + sR

k

⊤
sR
j = 0

sL
k

⊤
sR
j = 0

sR
k

⊤
sL
j = 0 (4.25)
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2.

∑

i/∈L

pks
L
k s

R
k

⊤
= 0 (4.26)

3.
∥

∥

∥

∥

∥

∑

i/∈L

pk

(

sL
k s

L
k

⊤
+ sR

k sR
k

⊤
)

∥

∥

∥

∥

∥

2

F

=

∑

i∈L̄(h) pihi

σ2(N − |L(h)|) (4.27)

The first condition above can be seen as an equivalent to the orthogonality condition

for the oversized users in the synchronous case, and second and third conditions

together can be seen an equivalent to the condition for the non-oversized users.

We are now ready to characterize the jointly optimal power and sequence alloca-

tion for the asynchronous system in (4.21). Note that, if the powers are chosen as a

function of the channel states, the sequence optimized ergodic sum capacity is the ex-

pectation of (4.24), and is exactly equivalent to (4.10). Thus, the power optimization

can be carried out exactly as in Section 4.2, and the optimal power allocation dic-

tates that only up to the best N users transmit simultaneously, according to a single

user waterfilling policy, as in (4.19). Also, following from the synchronous case, there

will not be any non-oversized users in the system, and the sequences jointly optimal

with this power allocation policy need only satisfy condition 1 above. Therefore, the

analysis in this chapter covers symbol asynchronous chip synchronous systems as well

as symbol synchronous systems.

91



4.5 Joint Signature Sequence and Power Allocation for Fading CDMA

Systems with Multiple Receive Antennas

Inspired by the promising recent results regarding the capacity of MIMO systems, in

this section we investigate the possible sum capacity gain that may be achieved by

using multiple antennas at the receiving end of the uplink of fading CDMA, where the

transmitters have perfect CSI, and they choose the powers and the signature sequences

as a function of the CSI. This model is well suited for the uplink of a CDMA system,

since usually the transmitters are mobile devices, each of which would have a single

antenna, whereas the base station may make use of multiple antennas to provide

spatial diversity.

Denoting the channel gain from user i to receiver antenna j by hij, letting Hij ,

hij, and defining the “super signature sequences” as qi(H) , [hi1 · · · hiM ]⊤ ⊗ si(H),

where ⊗ represents the Kronecker product, the problem can be stated as,

max
p(H),S(H)

EH

[

log

∣

∣

∣

∣

∣

INM +
K
∑

i=1

pi(H)

σ2
qi(H)qi(H)⊤

∣

∣

∣

∣

∣

]

s.t.EH [pi(H)] = p̄i, pi(H) ≥ 0 (4.28)

Note that, since the joint selection of the signature sequences and the powers

enables us to choose the amount of power we allocate to each dimension, this problem

is equivalent to choosing the covariance matrices of the transmitted vectors; however,

care must be taken since there is an additional constraint on the covariance matrices,
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which is a unit rank constraint. Therefore, the waterfilling solution for the multiple

antenna case in [10] is not applicable.

The super sequences qi(H) have an effective processing gain of NM , while not

causing any increase in the required bandwidth, thanks to the spatial diversity intro-

duced by the channel. This fact is likely to translate into a higher sum capacity, as

with higher processing gain the users can be placed further apart from each other, and

the interference is reduced. However, due to the fact that the channel evolution is not

under the control of the designer, the super sequences cannot be arbitrarily chosen

from the entire NM dimensional space, and the problem of finding the N -dimensional

sequences, which when translated by the channel will have the best placement in the

signal space is rather difficult. In this section, we provide an algorithmic solution to

the joint sequence and power optimization problem. Our approach is guaranteed to

give increasing values of sum capacity at each iteration, but we do not provide a proof

for the global optimality of the fixed point.

Inspired by the findings in Section 4.3, we propose a one-user-at-a-time iterative

algorithm, which iterates between the powers and signature sequences. We first start

by the power update for a given set of sequences. Then, the super signature sequences

qk are fixed, and the problem reduces to the one in Chapter 2, where the signature

sequence sk is replaced by qk, and the channel state is also absorbed into qk. Then,

from (2.6),

Csum =
1

2
EH

[

log |Bk| + log
(

1 + pk(H)q⊤
k B−1

k qk

)}

(4.29)
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where

Bk = σ2IN +
∑

i6=k

pi(H)qiq
⊤
i (4.30)

Therefore, proceeding as in Chapter 2, for fixed sequences, the optimal power update

for user k is given by

pk(H) =

(

1

λ̃k

− 1

q⊤
k B−1

k qk

)+

(4.31)

Once the power of user k is updated, it is fixed for the signature sequence update.

Unlike the single antenna case, the solution to the signature sequence optimization

problem, even for the case of fixed fading and powers, is not known. However, there

are algorithms which are known to improve the sum capacity value at each iteration

for the case of a single antenna at the receiver, and these algorithms generalize to the

multiple antenna case easily, as follows.

We will use the eigen-update [53] for the signature sequence of user k. Note that,

in (4.29), the contribution of the signature sequence, as well as the power of user k is

isolated. Defining

Q̃k = [hi1 · · · hiM ]⊤ ⊗ IN (4.32)

we can rewrite (4.29) explicitly as a function of the signature sequence sk, i.e.,

Csum = C̄k +
1

2
EH

[

log
(

1 + pk(H)s⊤k Q̃⊤
k B−1

k Q̃ksk

)]

(4.33)

where, as in Chapter 2, C̄k denotes the part of the sum capacity that is independent
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of sk. Therefore, the sum capacity is maximized if the signature sequence sk is chosen

in the direction of the eigenvector of Q̃⊤
k B−1

k Q̃k, which corresponds to the largest

eigenvalue [53].

To summarize, the proposed algorithm is stated as follows: for given fixed initial

signature sequences, we use the optimal single user power update (4.31) to compute

the power of user k. Then for the new set of fixed powers, we find the new signa-

ture sequence of user k using the eigen-update. We iterate over the users until the

algorithm converges.

Clearly, this algorithm is not guaranteed to converge to a global optimum for

the problem. However, it is guaranteed to give increasing values of Csum. This un-

certainty exists even for the sequence only update, as its convergence to the global

optimum is yet to be proved. Nevertheless, through simulations, and by direct com-

parison to exhaustive searches for small systems (i.e., K = 3, N = 2,M = 2) we have

observed that the eigen-update for signature sequences always converges to the opti-

mal sequence set, for a fixed level of fading. We observed, as in [56] that, a very high

percentage of the time, the resulting sequence set consisted of orthogonal partitions,

while for a small portion of channel gain values, we also clearly observed a deviation

from this behavior. Based on the numerical observation that the fixed point of the

algorithm always converges to the optimum, we conjecture that some recent results

regarding the convergence of iterative sequence design algorithms [57,58] would gen-

eralize to systems with multiple antennas at the receiver, and that such algorithms

indeed converge to the optimum signature sequence set. Since it is a formidable task

to compute and compare the channel adaptive sequence and power allocations exhaus-
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tively, we are not able to provide a similar conjecture for the iterative joint power

and sequence optimization algorithm. The convergence of the iterative algorithm

proposed in this section is illustrated in the numerical results section.

4.6 Simulation Results

Firstly, we simulate a system where the number of users is equal to the processing

gain: K = N = 3. In all of our simulations, we pick σ2 = 1, the average power

of each user to be 1, the initial power distribution uniformly, and the probability

distribution of the channel to be uniform on the intervals shown in figures. In this

case, by our arguments in Section 4.2, we expect the optimal signature sequences to

be three orthogonal sequences. Figure 4.1 shows the convergence of our algorithm,

together with the convergence of the iterative waterfilling algorithm we provided for

fixed sequences in Section 4.3. When we optimize the powers and signature sequences

jointly, we see that the sum capacity achieved is identical to that of a system with fixed

orthogonal sequences, meaning channel adaptive and non-adaptive sequence selections

give us the same capacity value. The power allocation strategy corresponding to the

orthogonal signature sequences found by the algorithm is independent one-user-at-a-

time waterfilling for each user. Our algorithm in this case converges to the optimum

in one round of iterations (one iteration for each user). The capacity achieved by a

randomly generated signature sequence matrix S containing unit-norm sequences is

also given for comparison; as expected the sum capacity for that matrix S is inferior

to the orthogonal sequences case.
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Figure 4.1: Convergence of the sum capacity for K = N = 3.
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Figure 4.2: Convergence of the sum capacity for K = 4, N = 3.

The convergence plots for a more interesting case where K = 4, N = 3 are given

in Figure 4.2. Here, we again compare the capacity achieved by our algorithm to some
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fixed random sequences, and we see that we get a higher capacity. We also compare

our result to a fixed set of WBE sequences, which are the optimum sequences for a

fixed channel state and equal average received powers. The iterative waterfilling with

sequence optimization again achieves a better sum capacity. Also remarkably, the

transmit strategy is such that at most 3 of the 4 users transmit together (on a region

with non-zero probability, after eliminating the states where the channel states of any

two users are equal), and they are allocated orthogonal sequences. Figures 4.3(a)-

4.3(d) further illustrate the details of the power and signature sequence allocation.

Figures 4.3(a) and 4.3(b) both pertain to a plane in 4 dimensional channel state

space, where we pick h3 = h4 = 0.4, and observe the power distribution of users 1

and 2 as a function of their fading states. The gray levels correspond to the amount

of power allocated, lighter colors indicating more power. Clearly, the users perform

single user waterfilling for the chosen channel states, and their powers do not depend

on fading states and powers of each other. As h3 = h4 = 0.4, from (4.14) we expect

that users 1 and 2 would transmit when their channels are better than 0.4, with

orthogonal sequences, and hence the single user waterfilling, which is what we observe.

Note that, according to the notion in [20], users 1 and 2 are oversized whenever their

channel gains are better than 0.4.

Figures 4.3(c) and 4.3(d) correspond to a case where we pick the maximum possible

values for the channel states h3 and h4, i.e., h3 = h4 = 0.9, so that except for the

degenerate equality cases, users 3 and 4 will always be oversized on the plane of

channel states we consider. Then, the remaining user, according to our results, should

transmit if and only if it has the next best channel (note that since channels are all
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Figure 4.3: Cross sections of power distributions for users 1 and 2.

taken to be identically distributed, the λis are the same for all users and they do

not effect the ordering). This is what is observed in Figures 4.3(c) and 4.3(d), the

stronger of users 1 and 2 perform single user waterfilling, and the weaker one remains

silent, as in the Knopp-Humblet [6] solution. The arbitrariness in powers in equal

channels case is again observed, and is consistent with our previous arguments.

Finally, we simulate the iterative algorithm presented in Section 4.5. Figure 4.4
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Figure 4.4: Convergence of sum capacity for a fading CDMA system equipped with
multiple antennas at the receiver, K = 3, N = 2, M = 2.

illustrates the convergence of the iterative algorithm for a system with K = 3, N = 2,

M = 2. The fading is assumed to be uniformly distributed in {0.3,0.6,0.9} in both

single and two antenna cases. The use of multiple antennas improves the capacity

significantly, due to the extra spatial dimension provided.

4.7 Summary and Conclusions

For a CDMA system subject to fading, we showed that the ergodic sum capacity is

maximized by allocating orthogonal signature sequences to min(N,K) of the users

with favorable channel states, and allocating powers to those users by a single user

waterfilling strategy over some partitions of channel state space. In each partition, a

group of users perform orthogonal transmissions, thus the users avoid any interference
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from each other in order to maximize the sum capacity.

A significant property of the jointly optimal power and signature sequence allo-

cation policy is that although we have started with assuming all users have perfect

CSI, including the channel states of other users, the solution shows that it is in fact

sufficient if a particular user knows its own channel state, and whether its channel

state is one of the top N channel states. Therefore, the optimum policy can be easily

implemented with a minor feedback from the base station, indicating each transmit-

ter whether it should transmit, and if so, with what signature sequence. The power

allocation is also significantly simpler than the case of power control only, since by the

virtue of orthogonal transmissions, there is no multiaccess interference in the system,

and the users do not need to have any SIR information.

We also proposed an iterative signature-update/power-waterfilling algorithm to

find the optimal allocation of signature sequences and powers, and proved its conver-

gence to the globally optimum solution.

We have extended the results for the symbol synchronous CDMA to the asyn-

chronous case. The sum capacity of the asynchronous CDMA is equivalent to that

of its synchronous counterpart when the signature sequences are optimized, and the

power allocation policy that achieves this capacity is also the same for both systems.

The sequence allocation policy that is jointly optimum with the established power

allocation policy is also obtained, and involves orthogonality like conditions involving

left and right signature sequences.

Finally we have investigated the problem of maximizing the sum capacity of a

fading CDMA channel with multiple antennas at the receiver, and we developed an
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iterative algorithm that is a combination of the iterative waterfillng algorithm of

Chapter 2, and the eigen-update for sequence optimization.

The results of this chapter have been published in part in [22,23].
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Chapter 5

Power Control for Fading Multiple Access Channels with

User Cooperation

5.1 Introduction

Increasing demand for higher rates in wireless communication systems have recently

triggered major research efforts to characterize the capacities of such systems. The

wireless medium brings along its unique challenges such as fading and multiuser in-

terference, which make the analysis of the communication systems more complicated.

On the other hand, the same challenging properties of such systems are what give rise

to the concepts such as diversity, over-heard information, etc., which can be carefully

exploited to the advantage of the network capacity.

In the early 1980s, several problems which form a basis for the idea of user cooper-

ation in wireless networks were solved. First, the case of a two user MAC where both

users have access to the channel output was considered by Cover and Leung [28], and

an achievable rate region was obtained for this channel. Willems and van der Meulen

then demonstrated [29] that the same rate region is achievable if there is a feedback

link to only one of the tansmitters from the channel output.
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Figure 5.1: Multiple access channel with generalized feedback.

The capacity region of the MAC with partially cooperating encoders was obtained

by Willems in [30]. In this setting, the encoders are assumed to be connected by fi-

nite capacity communication links, which allow the cooperation. Willems and van

der Meulen also considered a limiting case of cooperation where the encoders “crib”

from each other, that is, they learn each others’ codewords before the next trans-

mission [31]. Several scenarios regarding which encoder(s) crib, and how much of

the codewords the encoders learn are treated, and the capacity region for each case

is obtained in [31]. The capacity of such channels are an upper bound to the rates

achievable by cooperative schemes, since in the case of cribbing encoders, the sharing

of information comes for free, i.e., the transmitters do not allocate any resources such

as powers, to establish a common information.

An achievable rate region for a MAC with generalized feedback was found in [32].

This channel model, which is illustrated in Figure 5.1 [32] is worth special attention as

far as the wireless channels are concerned, since it models the over-heard information

by the transmitters. In particular, for a two user discrete memoryless MAC with

generalized feedback described by (X1 × X2, P (y, y1, y2|x1, x2),Y × Y1 × Y2), where

user 1 has access to channel output Y1 and user 2 has access to channel output Y2,
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the encoding functions were defined in [32] as

X1n =f1n(W1, Y
n−1
1 ),

X2n =f2n(W2, Y
n−1
2 ), n = 1, · · · , N (5.1)

and the decoding function was defined as

(Ŵ1, Ŵ2) = g(Y N) (5.2)

where N denotes the total number of channel uses, and Y n
1 denotes the vector

[Y11, Y12, · · · , Y1n], etc. Then, an achievable rate region was obtained by using a su-

perposition block Markov encoding scheme, together with backward decoding, where

the receiver waits to receive all B blocks of codewords before decoding.

Recently, Sendonaris, Erkip and Aazhang have successfully employed the results of

these rather general problems, particularly that of generalized feedback, to a Gaussian

MAC in the presence of fading, leading to user cooperation diversity and higher

rates [33]. In this setting, both the receiver and the transmitters receive noisy versions

of the messages of each other, and slightly modifying the basic relay channel case,

the transmitters form their codewords not only based on their own information, but

also on the information they have received from each other. It is assumed in [33] that

channel state information for each link is known to the corresponding receiver on that

link, and also phase of the channel state needs to be known at the transmitters in order

to obtain a coherent combining gain. The achievable rate region is shown to improve

significantly over the capacity region of MAC with non-cooperating transmitters,
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especially when the channel between the two users is relatively good on average.

There have also been some recent work on user cooperation systems under various

assumptions on the available channel state information, and the level of cooperation

among the users. Laneman, Tse and Wornell [59] have characterized the outage

probability behavior for a system where the users are allowed to cooperate only in half-

duplex mode, and where no CSI is available at the transmitters. For the relay channel,

which is a special one-sided case of user cooperation, Host-Madsen and Zhang [60]

have solved for power allocation policies that optimize some upper and lower bounds

on the ergodic capacity when perfect channel state information is available at the

transmitters and the receiver. For a user cooperation system with finite capacity

cooperation links, Erkip [61] has proposed a suboptimal solution to the problem of

maximizing the sum rate in the presence of full channel state information, where it

was also noted that the resulting optimization problem is non-convex.

In this chapter, we consider a two user fading cooperative Gaussian MAC with

complete CSI at the transmitters and the receiver, and average power constraints

on the transmit powers. Note that, this requires only a small quantity of additional

feedback, namely the amplitude information on the forward links, over the systems

requiring coherent combining [33]. In this case, the transmitters can adapt their

coding strategies as a function of the channel states, by adjusting their transmit pow-

ers [5, 7]. We characterize the optimal power allocation policies which maximize the

set of ergodic rates achievable by block Markov superposition coding. To this end,

we first prove that the seemingly non-concave optimization problem of maximizing

the achievable rates can be reduced to a concave problem, by noting that some of the
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Figure 5.2: Two user fading cooperative MAC.

transmit power levels are essentially zero at every channel state, which reduces the

dimensionality of the problem. By this, we also show that the block Markov superpo-

sition coding strategy proposed in [32] and employed in [33] for a Gaussian channel

can be simplified considerably by making use of the CSI. Due to the non-differentiable

nature of the objective function, we use sub-gradient methods to obtain the optimal

power distributions that maximize the achievable rates, and we provide the corre-

sponding achievable rate regions for various fading distributions. We demonstrate

that controlling the transmit powers in conjunction with user cooperation provides

significant gains over the existing rate regions for cooperative systems.

5.2 System Model

We consider a two user fading Gaussian MAC, where both the receiver and the trans-

mitters receive noisy versions of the transmitted messages, as illustrated in Figure 5.2.

The system is modelled by,
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Y0 =
√

h10X1 +
√

h20X2 + Z0 (5.3)

Y1 =
√

h21X2 + Z1 (5.4)

Y2 =
√

h12X1 + Z2 (5.5)

where Xi is the symbol transmitted by node i, Yi is the symbol received at node i,

and the receiver is denoted by i = 0. Zi is the zero-mean additive white Gaussian

noise at node i, having variance σ2
i ,
√

hij are the random fading coefficients, the

instantaneous realizations of which are assumed to be known by both the transmitters

and the receiver. We assume that the channel variation is slow enough so that the

fading parameters can be tracked accurately at the transmitters, yet fast enough to

ensure that the long term ergodic properties of the channel are observed within the

blocks of transmission [35].

The transmitters are capable of making decoding decisions based on the signals

they receive and thus can form their transmitted codewords not only based on their

own information, but also based on the information they have received from each

other. This channel model is a special case of the MAC with generalized feedback [32].

The achievable rate region is obtained by using a superposition block Markov encoding

scheme, together with backward decoding, where the receiver waits to receive all B

blocks of codewords before decoding. For the Gaussian case, the superposition block

Markov encoding is realized as follows [33]: the transmitters allocate some of their

powers to establish some common information in every block, and in the next block,

they coherently combine part of their transmitted codewords. In the presence of
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channel state information, by suitably modifying the coding scheme given by [33] to

accommodate for channel adaptive coding strategies, the encoding is performed by

Xi =
√

pi0(h)Xi0 +
√

pij(h)Xij +
√

pUi
(h)Ui (5.6)

for i, j ∈ {1, 2}, i 6= j, where Xi0 carries the fresh information intended for

the receiver, Xij carries the information intended for transmitter j for cooperation

in the next block, and Ui is the common information sent by both transmitters for

resolution of the remaining uncertainty from the previous block, all chosen from unit

power Gaussian distributions. All the transmit power is therefore captured by the

power levels associated with each component, i.e., pi0(h), pij(h) and pUi
(h), which

are required to satisfy average power constraints,

E [pi0(h) + pij(h) + pUi
(h)] = E[pi(h)] ≤ p̄i, i = 1, 2. (5.7)

Following the results in [33], it can be shown that the achievable rate region is

given by the convex hull of all rate pairs satisfying,

R1 < E

[

log

(

1 +
h12p12(h)

h12p10(h) + σ2
2

)

+ log

(

1 +
h10p10(h)

σ2
0

)]

(5.8)

R2 < E

[

log

(

1 +
h21p21(h)

h21p20(h) + σ2
1

)

+ log

(

1 +
h20p20(h)

σ2
0

)]

(5.9)

R1 +R2 < min

{

E

[

log

(

1 +
h10p1(h) + h20p2(h) + 2

√

h10h20pU1
(h)pU2

(h)

σ2
0

)]

,

E

[

log

(

1 +
h10p10(h) + h20p20(h)

σ2
0

)

+ log

(

1 +
h12p12(h)

h12p10(h) + σ2
2

)

+ log

(

1 +
h21p21(h)

h21p20(h) + σ2
1

)

]}

(5.10)
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where the convex hull is taken over all power allocation policies that satisfy (5.7).

For a given power allocation, the rate region in (5.8)-(5.10) is either a pentagon or

a triangle, since, unlike the traditional MAC, the sum rate constraint in (5.10) may

dominate the individual rate constraints completely. The achievable rate region may

alternatively be represented as the convex hull of the union of all such regions. Our

goal is to find the power allocation policies that maximize the rate tuples on the rate

region boundary.

5.3 Structure of the Sum Rate and the Optimal Policies

We first consider the problem of optimizing the sum rate of the system, as it will

also shed some light onto the optimization of an arbitrary point on the rate region

boundary. The sum rate (5.10) is not a concave function of the vector of variables

p(h) = [p10(h) p12(h) pU1
(h) p20(h) p21(h) pU2

(h)], due to the variables in the de-

nominators. In what follows, we show that for the sum rate to be maximized, for

every given h, at least two of the four components of [p10(h) p12(h) p20(h) p21(h)]

should be equal to zero, which reduces the dimensionality of the problem and yields

a concave optimization problem.

Theorem 5.1 Let the effective channel gains normalized by the noise powers be de-

fined as sij = hij/σ
2
j . Then, for the power control policy p∗(h) that maximizes (5.10),

we need

1. p∗10(h) = p∗20(h) = 0, if s12 > s10 and s21 > s20

2. p∗10(h) = p∗21(h) = 0, if s12 > s10 and s21 ≤ s20
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3. p∗12(h) = p∗20(h) = 0, if s12 ≤ s10 and s21 > s20

4. p∗12(h) = p∗21(h) = 0

OR

p∗10(h) = p∗21(h) = 0

OR

p∗12(h) = p∗20(h) = 0































































if s12 ≤ s10 and s21 ≤ s20

Proof: To simplify the notation, let us drop the dependence of the powers on the

channel states, whenever such dependence is obvious from the context. Let pi =

pi0 + pij + pUi
be the total power allocated to a given channel state. Let us define

A = 1 + s10p1 + s20p2 + 2
√
s10s20pU1

pU2
(5.9)

B =
1 + s10p10+s20p20

(1 + s12p10)(1 + s21p20)
(5.10)

C = (1 + s12(p10 + p12)) (1 + s21(p20 + p21)) (5.11)

Then, an equivalent representation of the sum rate (5.10) is

Rsum = min {E [log(A)] , E [log(BC)]} (5.12)

Now, let us arbitrarily fix the total power level, pi, as well as the power level used

for cooperation signals, pUi
< pi, allocated to a given state for each user. For each

such allocation, the quantities A and C appearing in the sum-rate expression are

fixed, i.e., allocating the remaining available power pi−pUi
among pi0 and pij will not

alter these quantities. Note that, such allocation also does not alter the total power

consumption at the given state, so we may limit our attention to the maximization,
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max
{p10,p20}

B (p10, p20)

s.t. p10 + p12 = p1 − pU1

p20 + p21 = p2 − pU2
(5.13)

The partial derivatives of B with respect to p10 and p20 are

∂B

∂p10

=
s10 − s12(1 + s20p20)

(1 + s12p10)2(1 + s21p20)
(5.14)

∂B

∂p20

=
s20 − s21(1 + s10p10)

(1 + s21p20)2(1 + s12p10)
(5.15)

1. s12 > s10, s21 > s20. Then, ∂B
∂p10

< 0 and ∂B
∂p20

< 0, i.e., B(p10, p20) is monoton-

ically decreasing in both p10 and p20, therefore the sum rate is maximized at

p10 = p20 = 0.

2. s12 > s10, s21 ≤ s20. Then, ∂B
∂p10

< 0, and the function is maximized at p10 = 0

for any p20. But this gives ∂B
∂p20

|p10=0 > 0, meaning p20 should take its maximum

possible value, i.e., p21 = 0.

3. s12 ≤ s10, s21 > s20. Follows the same lines of case 2) with roles of user 1 and

2 reversed.

4. s12 ≤ s10, s21 ≤ s20. In this case, the partial derivatives of B can be both made

equal to zero within the constraint set, yielding a critical point. However, using

higher order tests, it is possible to show that this solution corresponds to a saddle

point, andB is again maximized at one of the boundaries, p10 = 0, p20 = 0, p10 =

p1 − pU1
, p20 = p2 − pU2

. Inspection of the gradient on these boundary points
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yields one of the three corner points {(p1−pU1
, 0), (0, p2−pU2

), (p1−pU1
, p2−pU2

)}

as candidates, each of which corresponds to one of the solutions in case 4).

Although two of the components of the power vector are guaranteed to be equal

to zero, which ones will be zero depends on the pi and pUi
that we fixed, therefore

we are not able to completely specify the solution, independent of pi and pUi
, in

this case. On the other hand, the settings of interest to us are those where the

channels between the cooperating users are on the average much better than

their direct links, since it is in these settings when cooperative diversity yields

high capacity gains [33]. In such scenarios, the probability of both users’ direct

link gains exceeding their corresponding cooperation link gains (case 4) is a

very low probability event. Therefore, which of the three possible operating

points is chosen is not of practical importance, and we can safely fix the power

allocation policy to one of them to carry on with our optimization problem

for other variables. Although admittedly this argument is likely to cause some

suboptimality in our scheme, as will be seen in the numerical examples, we still

obtain a significant gain in the achievable rates.

2

The significance of this result is two-fold. Firstly, given a channel state, it greatly

simplifies the well known block Markov coding, in a very intuitive way: if the direct

links of both users are inferior to their cooperation links, the users do not transmit

direct messages to the receiver as a part of their codewords, and they use each other

as relays. If one of the users’ direct channel is better than its cooperation channel, and
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the other user is in the opposite situation, then the user with the strong direct channel

chooses to transmit directly to the receiver, while the weaker direct channel user

still chooses to relay its information over its partner. Second important implication

of this result is that it now makes the problem of solving for the optimal power

allocation policy more tractable, since it shrinks the constraint set on the variables,

and more importantly, it makes the sum rate a concave function over the reduced set

of constraints and variables.

Corollary 5.1 The sum rate Rsum given by (5.10), (5.12) is a concave function of

p(h), over the reduced constraint set described by Theorem 5.1.

Proof: The proof of this result follows from directly substituting the zero power

components into the sum rate expression in (5.12). Note that in each of the four

cases, the second function in the minimization, i.e., log(BC) takes either the form

log(1 + a) + log(1 + b), or log(1 + a+ b), both of which are clearly concave in a and

b. Also, log(A) is clearly a concave function of p(h) since it is a composition of a

concave function with the concave and increasing logarithm. The desired result is

obtained by noting that the minimum of two concave functions is concave. 2

Thus far we have discussed the structure of the sum rate, as well as some properties

of the optimal power allocation that maximizes that rate. We now turn back to the

problem of maximizing other rate points on the rate region boundary. To this end,

we point out another remarkable property of the solution in Theorem 5.1. Consider

maximizing the bound on R1 in (5.8). For fixed pU1
and p1, it is easy to verify that

all of the available power should be allocated to the channel with the higher gain,
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i.e., if s12 > s10, then we need p10 = 0 and p12 = p1 − pU1
. The same result also

applies to R2. But this shows that, the policies described in Theorem 5.1 completely

agree with optimal policies for maximizing the individual rate constraints in cases

1)-3), and they also agree if we choose the operating point in case 4) to be p12 =

0, p21 = 0. Therefore, the allocation in Theorem 5.1 enlarges the entire rate region in

all directions, except for the subtlety in case 4) for the sum rate. This has the benefit

that the weighted sum of rates, say Rµ = µ1R1 + µ2R2 also has the same concavity

properties of the sum rate, since for µi > µj, the weighted sum of rates can be written

as Rµ = µjRsum+(µi−µj)Ri, where both Rsum and Ri are concave. Optimum power

control policies that achieve the points on the boundary of the achievable rate region

can then be obtained by maximizing the weighted sum of rates, which is the goal of

the next section.

5.4 Rate Maximization via Subgradient Methods

In this section we focus on maximizing the weighted sum of rates. To illustrate both

the results of the preceding section and the problem statement for this section more

precisely, let us consider, without loss of generality, the case when µ1 ≥ µ2, and write
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down the optimization problem explicitly:

max
p(h)

(µ1 − µ2)

{

E1,2 [log(1 + p12(h)s12)]

+ E3,4 [log(1 + p10(h)s10)]

}

+ µ2 min

{

E[log(A)],

+ E1 [log(1 + p12(h)s12) + log(1 + p21(h)s21)]

+ E2 [log(1 + p12(h)s12) + log(1 + p20(h)s20)]

+ E3 [log(1 + p10(h)s10) + log(1 + p21(h)s21)]

+ E4 [log(1 + p10(h)s10 + p20(h)s20)]

}

s.t. E3,4 [p10(h)] + E1,2 [p12(h)] + E [pU1
] ≤ p̄1

E2,4 [p20(h)] + E1,3 [p21(h)] + E [pU2
] ≤ p̄2 (5.16)

where, ES denotes the expectation over the event that case S ⊂ {1, 2, 3, 4} from

Theorem 5.1 occurs, and A is as given by (5.9). Note that the objective function is

concave, and the constraint set is convex, therefore we can conclude that any local

optimum for the constrained optimization problem is a global optimum. However,

it is not possible to characterize the optimal allocation using standard approaches

such as employing Lagrangian optimization and Karush-Kuhn-Tucker conditions, nor

it is possible to resort to algorithms such as gradient ascent, because of the non-

differentiable nature of the objective function. Although Rµ is differentiable almost

everywhere since it is concave, its optimal value is attained along the discontinuity of

its gradient, namely when the two arguments of the minimum operation in (5.10) are

equal. Hence, we solve the optimization problem using the method of subgradients

116



from non-differentiable optimization theory [62,63].

The subgradient methods are very similar to gradient ascent methods in that

whenever the function is differentiable (in our case almost everywhere), the subgra-

dient is equivalent to the gradient. However, their major difference from gradient

ascent methods is that they are not necessarily monotonically non-decreasing. A

subgradient for a concave function f(x) is any vector γ that satisfies [63],

f(x′) ≤ f(x) + (x′ − x)⊤γ (5.17)

and the subgradient method for constrained maximization uses the update [63]

x(k + 1) = [x(k) + αkγk]
+ (5.18)

where [·]+ denotes the Euclidian projection on the constraint set, and αk is the step

size at iteration k. There are various ways to choose αk to guarantee convergence

of these methods to the global optimum; for our particular problem, we choose the

diminishing stepsize, normalized by the norm of the subgradient to ensure convergence

[62]

αk =
a

b+
√
k

1

‖ γ ‖ (5.19)

5.5 Simulation Results

In this section we provide some numerical examples to illustrate the performance of

the proposed joint power allocation and cooperation scheme.
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Figure 5.3: Rates achievable by joint power control and user cooperation for uniform
fading.

Figure 5.3 illustrates the achievable rate region we obtain for a system with

p̄i = σ2
i = 1, subject to uniform fading, where the links from the transmitters to

the receiver are symmetric and take values from the set {0.025, 0.050, · · · , 0.25}, each

with probability 1/10, while the link among the transmitters is also symmetric and

uniform, and takes the values {0.26, 0.27, · · · , 0.35}. Notice that here, we have inten-

tionally chosen the fading coefficients such that the cooperation link is always better

than the direct links, therefore, the system operates only in case 1) of Theorem 5.1.

Consequently, in this particular case, our power allocation scheme is actually the op-

timal power allocation policy for the block Markov superposition encoding scheme

(i.e., case 4) never happens).

The region for joint power control and cooperation is generated using the subgra-

dient method with parameters a = 50 and b = 5. We carried out the optimization for
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Figure 5.4: Rates achievable by joint power control and user cooperation for Rayleigh
fading.

various values of the priorities µi of the users, each of which give a point on the rate

region boundary, and then we performed a convex hull operation over these points.

We observe that power control by itself improves on the rate region of the coopera-

tive system with no power control, for rate pairs close to the sum rate, by utilizing

the direct link more efficiently. Joint user cooperation and power control scheme sig-

nificantly improves on all other schemes, as it takes advantage of both cooperation

diversity and time diversity in the system. In fact, we can view this joint diversity

utilization as adaptively performing coding, medium accessing and routing, thereby

yielding a cross-layer approach for the design of the communication system.

Figure 5.4 also corresponds to a system with unit SNR, but this time subject

to Rayleigh fading, i.e., the power gains to the receivers are exponential random

variables, with E[h10] = E[h20] = 0.3, E[h12] = E[h21] = 0.6. In this setting, all
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Figure 5.5: Convergence of Rµ using subgradient method for different step size pa-
rameters.

four cases in Theorem 5.1 are realized, and there is potentially some loss over the

optimally achievable rates. However, we obtain a very similar set of rate regions to

the uniform case, indicating that in fact the loss, if any, is very small thanks to the

very low probability of both of the direct links outperforming the cooperation link.

It is interesting to note in both Figures 5.3 and 5.4 that cooperation with power

control improves relatively less over power control only near the sum capacity. This

can be attributed to the fact that, for the traditional MAC, the sum rate is achieved by

time division among the users, which does not allow for coherent combining gain [6].

Therefore, it is not surprising to see that in order to attain cooperative diversity gain,

users may have to sacrifice some of the gain they obtain from exploiting the time

diversity.

In Figure 5.5, we illustrate the convergence of the subgradient method. The
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objective function is Rµ with µ1 = 2 and µ2 = 1, and the step size parameters are

varied. We observe that, by choosing larger step sizes, the non-monotonic behavior

of the subgradient algorithm becomes more apparent, however the convergence is

significantly faster than the smaller step sizes, as the algorithm is more likely to get

near the optimal value of the function in the initial iterations. Note that, in our

simulations we terminated the algorithm after 1000 iterations, and the three curves

would eventually converge after sufficiently large number of iterations.

5.6 Summary and Conclusions

We have addressed the problem of optimal power allocation for a fading cooperative

MAC, where the transmitters and the receiver have CSI, and are therefore able to

adapt their coding and decoding strategies by allocating their resources. We have

characterized the power control policies that maximize the rates achievable by block

Markov superposition coding, and proved that, in the presence of CSI, the coding

strategy is significantly simplified: given any channel state, for each of the users, one

of the three components, i.e., those that are intended for the receiver, for the other

transmitter, and for cooperation, should be allocated zero power at that channel

state. This result also enabled us to formulate the otherwise non-concave problem

of maximizing the achievable rates as a concave optimization problem. The power

control policies, which are jointly optimal with block Markov coding, were obtained

using subgradient method for non-differentiable optimization. The resulting achiev-

able rate regions for joint power control and cooperation improve significantly on

121



cooperative systems without power control, since our joint approach makes use of

both cooperative diversity and time diversity.

The results of this chapter have been published in [34].
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Chapter 6

Conclusions

The rapidly growing demand for wireless communication systems that support higher

data rates and larger number of users brings along the need for in-depth research

that investigates the theoretical performance limits of such systems, and searches

for policies and algorithms that can achieve or approach those limits in practice.

As in many engineering problems, the resources in a wireless communication system

are extremely scarce, due to physical constraints such as limited battery power and

available bandwidth.

In this thesis we have addressed the fundamental problem of characterizing the

ultimate capacity limits of practical wireless systems, and optimally allocating the

available system resources to achieve such limits. The main focus of the thesis has

been the information theoretic analysis of vector MACs, and specifically CDMA chan-

nels, that are subject to fading due to the several scatterers and multi-paths in the

transmission medium. The results in the thesis owe to the synthesis of several meth-

ods from information theory, estimation and detection theory, optimization theory,

parallel and distributed computing, matrix analysis, probability and statistics. The

main contributions can be briefly summarized as follows.
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• Sum capacity and optimum power allocation for fading CDMA

The future generation wireless networks are bound to be a transfer medium for

high rate data traffic, in addition to the traditional voice traffic. Data traffic

(email, file transfers etc.) is less delay sensitive, thereby allowing more flexi-

bility in transmit scheduling based on the quality of the channel, and average

performance metrics become more meaningful than instantaneous performance

metrics. Motivated by this, part of this dissertation characterizes the optimum

power allocation policy that maximizes the average sum capacity of a fading

CDMA channel, subject to average power constrains on the mobile stations.

The optimum policy can be viewed as a simultaneous waterfilling of powers in

time, as functions of the channel states, where the mobile users spend more

power at favorable channel states and less, or even no power, at bad channel

states. The power allocation policy also automatically dictates the optimum

medium accessing, or scheduling policy. Therefore, the information theoretic

framework allows us to come up with a cross layer design combining the phys-

ical and MAC layers of wireless systems. In contrast to scalar MACs, where

the optimum transmit policy is a TDMA-like policy [6], the usage of multiple

signal dimensions in the CDMA system leads to many users transmitting si-

multaneously while optimizing the system wide sum rate. The number of users

accessing the medium can be as high as N(N +1)/2, where N is the processing

gain, i.e., the dimensionality of the signal space.

This thesis also develops an iterative one-user-at-a-time waterfilling algorithm,
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which converges to the optimum solution, and which makes the numerical so-

lution of the otherwise highly non-linear problem practical and feasible.

• Capacity region of fading CDMA – policies that achieve arbitrary

rate points

While sum capacity is a very commonly used metric due to the fact that it

represents the total throughput flowing in a network, it falls short when we

would like to accommodate users with multiple priorities/rate classes in the

system. This leads to the need to characterize the set of all achievable rates,

i.e., the capacity region. The results presented here have addressed this need

by establishing the capacity region of fading CDMA channels, as well as the

individual power allocation policies that achieve any given point on the capac-

ity region boundary. The optimal power allocation is obtained by developing

a generalized version of the iterative waterfilling algorithm. We have further

established some geometric properties such as the non-strict convexity of the

capacity region, which translates to the sum capacity being achieved at many

different rate tuples, unlike the scalar MAC. This provides more flexibility to

the designer to choose a target rate tuple, while still obtaining the highest

throughput.

In practice, due to the bandwidth limitations on the feedback link, the CSI

often needs to be quantized. However, the results of this thesis demonstrate

that, even at very low feedback rates, resource allocation proves to be very

useful in terms of improving the capacity, and the capacity region for a system
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with limited feedback is very close to the capacity with perfect channel state

information. We conclude that, the knowledge about the relative quality of

the channels of different users, which does not require a high level of resolu-

tion, is what plays the major role in providing the gains obtained by resource

allocation.

• Jointly optimal power and waveform selection

Aside from adjusting the transmit power at the mobile units, availability of the

CSI at the transmitters can further be used to choose the spreading waveforms

(sequences) in spread spectrum systems, such as CDMA systems. The research

presented in this dissertation has led to the characterization of the jointly op-

timal transmit powers and transmit waveforms for a CDMA channel, which

maximize the sum capacity. The more complicated problem of joint allocation

of all available resources strikingly leads to a very compact and practical so-

lution: only the users with the best N channel states transmit simultaneously

using single user waterfilling, and these users are assigned orthogonal wave-

forms. In other words, the users position themselves orthogonally to each other

in either space or time, thus avoiding any interference. The resulting power and

waveform allocation can again be obtained by running a one-user-at-a-time al-

gorithm that iterates between power and signature sequence updates. Moreover,

from each user’s point of view, the optimal policy depends only on the user’s

own channel state and whether the user has one of the top N channel states,

which significantly reduces the amount of required feedback and facilitates a
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distributed implementation.

• Joint resource allocation and user cooperation in wireless networks

A very important feature arising from the physical nature of the wireless channel

is what is traditionally thought of as interference in networks: overheard infor-

mation. The fact that signals from all sources in the network are superposed

in the transmit medium can be taken advantage of in the design of wireless

networks, by allowing cooperation between the nodes in the network, yielding

cooperative diversity.

Facilitated by the increasing processing power and ability provided by the elec-

tronics technology, future generation wireless networks are likely to have a more

complex infrastructure, where the individual components of the networks are

also more capable. Therefore, user cooperation and its information theoretic

analysis will surely become increasingly essential for wireless networks, not only

because of the presence of the “free” side information overheard by the nodes,

but also because they provide a natural way to encode, transmit, route and

decode information in a wireless network, providing a unifying cross-layer de-

sign. Such networks are very desirable because of their ability to adapt to

changing system conditions, and efficient use of resources. Simple cooperating

networks can be viewed as building blocks of larger ad-hoc networks. More-

over, the need for user cooperation naturally arises in many practical situa-

tions, i.e., in sensor networks where the nodes have correlated information, or

in multiuser settings, where some of the users, which are blocked from their
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intended receivers by obstacles, can still reach other users with better channel

states.

This thesis provides a joint treatment of resource allocation and user coop-

eration, for a simple fading Gaussian multiple access channel with two users.

Power control, when performed optimally in conjunction with block Markov

superposition coding, not only achieves much higher rates for both users, but it

also simplifies the underlying coding scheme and dictates the optimal multiple

accessing, and routing policies. Specifically, either the cooperation component

or the fresh information component of the transmitted codeword is shown to

have zero power, depending on the channel states. This is evidence that the

information theoretic approach is a powerful tool which combines multiple as-

pects of the communication and provides a way to achieve the aforementioned

cross layer design of wireless networks.
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