Problem 1) Determine the inverse Fourier transform of the frequency function G(f) defined by the
amplitude and phase spectra shown in the figure below.
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Problem 2) The Fourier transform of a signal g(?) is denoted by G(f). Prove the following properties
of the Fourier Transform:

a) If a real signal g(?) is an even function of time ¢, the Fourier transform G(f) is purely real. If a real
signal g(?) is an odd function of time ¢, the Fourier transform G(f) is purely imaginary.
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where G™(f) is the nth derivative of G(f) with respect to f.

o [ rglt)d= iﬂG%m
d g (t)gt)= ] G (WG (h—r)dh

o | elta)=]", G (1)Gir)df



Problem 3) Let 2(¢) denote the Hilbert transform of g(t). Derive the following set of Hilbert-
transform pairs:
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Problem 4) Consider the signal

s(t)=c(t)m(t)
whose m(t) is a low-pass signal whose Fourier transform M(f) vanishes for |f{>W, and ¢(?) is a high-
pass signal whose Fourier transform C(f) vanishes for [f|<W. Show that the Hilbert transform of s(t)

is
s(¢)=2(t)mf(1)
where ¢(¢) is Hilbert transform of ¢(?).



