
Problem 1) Determine the inverse Fourier transform of the frequency function G(f) defined by the 
amplitude and phase spectra shown in the figure below.

Problem 2) The Fourier transform of a signal g(t) is denoted by G(f). Prove the following properties 
of the Fourier Transform:

a) If a real signal g(t) is an even function of time t, the Fourier transform G(f) is purely real. If a real 
signal g(t) is an odd function of time t, the Fourier transform G(f) is purely imaginary.
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where G(n)(f) is the nth derivative of G(f) with respect to f.
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Problem 3)  Let ĝ ( t) denote the Hilbert transform of g(t). Derive the following set of Hilbert-
transform pairs:
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Problem 4) Consider the signal 
s( t)=c(t )m( t)

whose m(t) is a low-pass signal whose Fourier transform M(f) vanishes for |f|>W, and c(t) is a high-
pass signal whose Fourier transform C(f) vanishes for |f|<W. Show that the Hilbert transform of s(t) 
is 

ŝ( t)= ĉ(t )m( t)
where ĉ (t) is Hilbert transform of c(t).


