1. For coin A, the probability of landing on a head is equal to $\frac{1}{4}$ and the probability of landing on a tail is equal to $\frac{3}{4}$; coin B is a fair coin. Each coin is flipped 5 times. Let the random variable X denote the number of heads resulting from coin A, and Y denote the number of heads from coin B.
 a) What is the probability that $X = Y = 2$?
 b) What is the probability that $X = Y$?
 c) What is the probability that $X > Y$?
 d) What is the probability that $X + 5 \leq 5$?

2. X is a Gaussian random variable with mean 4 and variance 9, i.e., $X \sim N(4, 9)$. Determine
 a) $P(X > 7)$
 b) $P(0 < X < 9)$

3. Two random variables X and Y are distributed according to

 $f_{X,Y}(x,y) = \begin{cases}
 k(x+y) & 0 \leq x, y \leq 1 \\
 0 & \text{otherwise}
 \end{cases}$

 a) Find k
 b) What is $P(X + Y > 1)$?
 c) Find $P(X > Y)$
 d) Find $P(X > Y | X + 2Y > 1)$?
 e) Find $P(X = Y)$
 f) What is $P(X > 0.5 | X = Y)$
 g) Find $f_X(x)$ and $f_Y(y)$
 h) Find $f_X(x | X + 2Y > 1)$ and $E[X | X + 2Y > 1]$

4. Let Θ be uniformly distributed on $[0, \pi]$, and let the random variables X and Y be defined by $X = \cos(\Theta)$ and $Y = \sin(\Theta)$. Show that X and Y are uncorrelated, but not independent.

5. Let X and Y be independent Gaussian random variables, each distributed according to $N(0, \sigma^2)$. Define $Z = X + Y$ and $W = 2X - Y$. What is the joint PDF of Z and W? What is the covariance of Z and W?

6. Let the random process $X(t)$ be defined by $X(t) = A + Bt$ where A and B are independent random variables, each uniformly distributed on $(-1, 1)$. Find $R_X(t_1, t_2)$ and $E[X(t)]$. Is $X(t)$ WSS?

7. Haykin, Problem 1.3.

8. Haykin, Problem 1.4. (Check for WSS. If a Gaussian Process is WSS \Rightarrow it is SSS)