## 4.2 Discrete Random Variables

**Definition 4.2.1** A random variable that can take at most countable number of possible values is said to be discrete. Hence if X is discrete, then

$$S_X = \{s_1, s_2, \dots\}.$$

**Definition 4.2.2** The function  $p(\cdot)$  is called the probability mass function of X if it is defined by

$$p(a) = \mathbb{P}(X = a)$$

for any  $a \in S_X$ . We will write in short PMF for probability mass function.

**Example 4.5** Experiment: Flip a fair coin twice.

 $X = \{$ the number of tails $\}$ 

What is the PMF of X? First we see that

$$S_X = \{0, 1, 2\}.$$

The PMF works only on this set. Hence we need to compute 3 corresponding values of p(x).

$$p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{HH\}) = \frac{1}{4}$$
$$p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{HT, TH\}) = \frac{2}{4}$$
$$p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{TT\}) = \frac{1}{4}$$

We use bar graph to graph PMFs of discrete random variables. Here is the graph of PMF,



and the rule of X

$$p(x) = \begin{cases} 1/4 & \text{if } x = 0,2\\ 1/2 & \text{if } x = 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.2.1 Let X be a discrete random variable and  $p(\cdot)$  be its PMF. Then for  $S_X = \{x_1, x_2, ...\}$ 

i.  $p(x_i) \ge 0$  for any i = 1, 2, ..., and

ii. 
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

*Proof.* i.  $p(x_i) = \mathbb{P}(X = x_i) \ge 0$  for any i = 1, 2, ...ii.  $\sum_{i=1}^{\infty} p(x_i) = p(x_1) + p(x_1) + ... = \mathbb{P}(X = x_1) + \mathbb{P}(X = x_2) + ...$  Since the sets  $\{X = x_1\}, \{X = x_1\}, ...$  are mutually exclusive and their union is the sample space, we have

$$\mathbb{P}(X = x_1) + \mathbb{P}(X = x_2) + \dots = \mathbb{P}(S) = 1$$

**Example 4.6** *X* is a random variable with PMF

$$p(x) = \begin{cases} c & \text{if } x = 7\\ 1/3 & \text{if } x = 10\\ 1/2 & \text{if } x = 100\\ 0 & \text{otherwise} \end{cases}$$

What is the value of *c*?

$$1 = \sum_{i=1}^{\infty} p(x_i) = p(7) + p(10) + p(100) = c + 1/3 + 1/2$$

and so c = 1 - 5/6 = 1/6.

**Example 4.7** Which of the following functions are PMF?

a. 
$$p(x) = \begin{cases} -1/2 & \text{if } x = 0\\ 1/2 & \text{if } x = 1\\ 0 & \text{otherwise} \end{cases}$$
  
b.  $p(x) = \begin{cases} 1/2 & \text{if } x = 2\\ 3/2 & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$   
c.  $p(x) = \begin{cases} 0.2 & \text{if } x = 10\\ 0.3 & \text{if } x = 11\\ 0.5 & \text{if } x = 12\\ 0 & \text{otherwise} \end{cases}$ 

Just the last one is PMF.

**Example 4.8** Let *X* be a random variable with PMF

$$p(i) = c \frac{\lambda^i}{i!}$$
,  $i = 0, 1, 2, ...$ 

where c and  $\lambda$  are constants. Find

$$\mathbb{P}(X \leq 2).$$

(Hint: Use the equality  $\sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{\lambda}$ ) First, we need to find *c*. To do this,

$$1 = \sum_{i=0}^{\infty} p(i) = \sum_{i=0}^{\infty} c \frac{\lambda^i}{i!} = c \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = c \cdot e^{\lambda}.$$

Then

 $c = e^{-\lambda},$ 

and

Hence

 $p(i) = e^{-\lambda} \frac{\lambda^i}{i!}.$ 

$$\mathbb{P}(X\leq 2)=\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)$$

= p(0) + p(1) + p(2)

$$=e^{-\lambda}+e^{-\lambda}\lambda+e^{-\lambda}rac{\lambda^2}{2}$$

 $=e^{-\lambda}\left(1+\lambda+rac{\lambda^2}{2}
ight).$ 

**Definition 4.2.3** Let X be a discrete random variable and 
$$p(x)$$
 be its PMF. The cumulative distribution function (CDF) of X is defined by

$$F(a) = \sum_{x \le a} p(x).$$

**Example 4.9** Experiment: Flip a coin 3 times.

 $X = \{$ the number of heads $\}$ 

Then

and

 $S_X = \{0, 1, 2, 3\}$ 

$$p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{TTT\}) = \frac{1}{8}$$

$$p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{TTH, THT, HTT\}) = \frac{3}{8}$$

$$p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{THH, HTH, HHT\}) = \frac{3}{8}$$

$$p(3) = \mathbb{P}(X = 3) = \mathbb{P}(\{HHH\}) = \frac{1}{8}.$$

Now we can write the CDF as follows:

$$F(0) = p(0) = \frac{1}{8}$$

$$F(1) = p(0) + p(1) = \frac{4}{8}$$

$$F(2) = p(0) + p(1) + p(2) = \frac{7}{8}$$

$$F(3) = p(0) + p(1) + p(2) + p(3) = 1.$$

What about F(2.5), F(20), F(-2)?

$$F(-2) = 0$$
  

$$F(2.5) = p(0) + p(1) + p(2) = \frac{7}{8}$$
  

$$F(20) = p(0) + p(1) + p(2) + p(3) = 1.$$

Let's graph the CDF of *X*.



**Example 4.10** Let *X* be a random variable with CDF



## Find its PMF.

$$p(x) = \begin{cases} 0.1 & \text{if } x = 10\\ 0.1 & \text{if } x = 30\\ 0.3 & \text{if } x = 50\\ 0.5 & \text{if } x = 60\\ 0 & \text{otherwise} \end{cases}$$

**Theorem 4.2.2** If F(x) is a CDF then i. F is non-decreasing, ii.  $0 \le F(x) \le 1$  for any x, iii.  $\lim_{x\to\infty} F(x) = 1$  and  $\lim_{x\to-\infty} F(x) = 0$ .