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The Basic Principle of Counting
Permutations
Combinations
Multinomial Coefficients

1 — Combinatorial Analysis

Before introduction of any notion about probability, it is important to go over some basics about
counting principles.

1.2 The Basic Principle of Counting

Question 1. A community consists of 10 women, each of whom has 3 children. How many
children are present in total?
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This simple diagram shows that there are 10 · 3 = 30
children. This is based on the following fact.

The Basic Principle of Counting: Suppose that two
experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each
outcome of experiment 1, there are n possible outcomes
of experiment 2, then together there are m · n possible
outcomes.
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This simple diagram shows that there are 10 ·3 = 30 children. This is based on the following
fact.

The Basic Principle of Counting: Suppose that two experiments are to be performed. Then if
experiment 1 can result in any one of m possible outcomes and if, for each outcome of experiment
1, there are n possible outcomes of experiment 2, then together there are m ·n possible outcomes.



C
op
yr
ig
ht
  b
y  
D
en
iz
  K
ar
lı

6 Combinatorial Analysis

2 CHAPTER 1. COMBINATORIAL ANALYSIS

W1

W10

W2

C1
1

C1
3

C1
2

C2
1

C2
3

C2
2

C10
1

C10
3

C10
2

This simple diagram shows that there are 10 · 3 = 30
children. This is based on the following fact.

The Basic Principle of Counting: Suppose that two
experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each
outcome of experiment 1, there are n possible outcomes
of experiment 2, then together there are m · n possible
outcomes.
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The Generalized Basic Principle of Counting: Suppose that r experiments are to be performed.
If

1st experiment may result in n1 possible outcomes,

2nd experiment may result in n2 possible outcomes,
...

rth experiment may result in nr possible outcomes,

then there is a total of
n1 ·n2 · ... ·nr

possible outcomes of r experiments.

⌅ Example 1.1 i. How many different 2 digit-3 letter- 2 digit licence plates are possible?
(No restriction) (e.g. 34 ABC 01)

10 10 29 29 29 10 10
" " " " " " "

Exp. 1 Exp. 2 E. 3 E. 4 E. 5 E. 6 E. 7

So there are 104 ·293 such plates.

ii. How many different 2 digit-3 letter- 2 digit licence plates are possible if no repetition of
letters is allowed?

10 10 29 28 27 10 10
" " " " " " "

Exp. 1 Exp. 2 E. 3 E. 4 E. 5 E. 6 E. 7

So there are 104 ·29 ·28 ·27 such plates.
⌅


