

DENIZ KARLI

Copyright © 2013 Deniz Karlı

PUBLISHED BY PUBLISHER

HTTP://WWW.ISIKUN.EDU.TR/ DENIZ.KARLI/

These notes are based on "A First Course in Probability Theory", 8th edition, by S. Ross.

First printing, March 2013

	Combinatorial Analysis	. 5
1.2	The Basic Principle of Counting	5
1.3	Permutations	7
1.4	Combinations	10
1.5	Multinomial Coefficients	15
2	Axioms of Probability	17
2.2	Sample Space and Events	17
2.3	Axioms of Probability	19
2.4	Some Simple Propositions	21
2.5	Sample Spaces Having Equally Likely Outcomes	23
3	Conditional Probability and Independence	29
3.2	Conditional Probabilities	29
3.3	Baye's Formula	29
3.4	Independent Events	29
3.5	P(.1F) is a Probability	29
4	Random Variables	31
4.1	Random Variables	31
4.2	Discrete Random Variables	34
4.3	Expected Value	38
4.4	Expectation of a Function of a Random Variable	41

4.5	Variance	43
4.6	The Bernoulli & Binomial Random Variables	46
4.6.1 4.6.2	Bernoulli Random Variable	46 47
4.7	Poisson Random Variable	50
4.8	Geometric Random Variable	53
4.9	Expected Value of Sums of Random Variables	56
4.10	Properties of CDF	57
5	Continuous Random Variables	59
5.2	Expectation and Variance of Continuous R.V.s	59
5.3	The Uniform R.V.	59
5.4	Normal R.V.s	59
5.5	Exponential R.V.s	59
5.6	Distribution of a Function of a R.V	59
6	Jointly Distributed Random Variables	61
6.1	Joint Distribution Functions	61
6.2	Independent R.V.s	61
6.3	Sums of Independent R.V.s	61
6.4	Conditional Distributions: Discrete Case	61
6.5	Conditional Distributions: Continuous Case	61
7	Properties of Expectation	63
7.2	Expectation of Sums of R.V.s	63
7.4	Covariance, Variance of Sums and Correlation	63

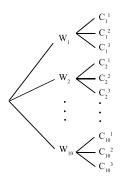
1 — Combinatorial Analysis

1

Before introduction of any notion about probability, it is important to go over some basics about counting principles.

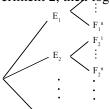
1.2 The Basic Principle of Counting

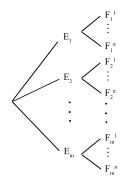
Question 1. A community consists of 10 women, each of whom has 3 children. How many children are present in total?



This simple diagram shows that there are $10 \cdot 3 = 30$ children. This is based on the following fact.

The Basic Principle of Counting: Suppose that two experiments are to be performed. Then if experiment 1 can result in any one of m possible outcomes and if, for each outcome of experiment 1, there are n possible outcomes of experiment 2, then together there are $m \cdot n$ possible outcomes.





The Generalized Basic Principle of Counting: Suppose that r experiments are to be performed. If

 1^{st} experiment may result in n_1 possible outcomes,

 2^{nd} experiment may result in n_2 possible outcomes,

 r^{th} experiment may result in n_r possible outcomes,

...

then there is a total of

$$n_1 \cdot n_2 \cdot \ldots \cdot n_r$$

possible outcomes of r experiments.

Example 1.1 i. How many different 2 digit-3 letter- 2 digit licence plates are possible? (No restriction) (e.g. 34 ABC 01)

10	10	29	29	29	10	10
\uparrow						
Exp. 1	Exp. 2	E. 3	E. 4	E. 5	E. 6	E. 7

So there are $10^4 \cdot 29^3$ such plates.

ii. How many different 2 digit-3 letter- 2 digit licence plates are possible if **no** repetition of letters is allowed?

10	10	29	28	27	10	10
\uparrow						
Exp. 1	Exp. 2	E. 3	E. 4	E. 5	E. 6	E. 7

So there are $10^4 \cdot 29 \cdot 28 \cdot 27$ such plates.