

DENIZ KARLI

Copyright (C) 2013 Deniz Karlı

Published by Publisher

HTTP://WWW.ISIKUN.EDU.TR/ DENIZ.KARLI/

These notes are based on "A First Course in Probability Theory", 8th edition, by S. Ross.
First printing, March 2013

1 Combinatorial Analysis 5
1.2 The Basic Principle of Counting 5
1.3 Permutations 7
1.4 Combinations 10
1.5 Multinomial Coefficients 15
2 Axioms of Probability 17
2.2 Sample Space and Events 17
2.3 Axioms of Probability 19
2.4 Some Simple Propositions 21
2.5 Sample Spaces Having Equally Likely Outcomes 23
3 Conditional Probability and Independence 29
3.2 Conditional Probabilities 29
3.3 Baye's Formula 29
3.4 Independent Events 29
3.5 P (. IF) is a Probability 29
4 Random Variables 31
4.1 Random Variables 31
4.2 Discrete Random Variables 34
4.3 Expected Value 38
4.4 Expectation of a Function of a Random Variable 41
4.5 Variance 43
4.6 The Bernoulli \& Binomial Random Variables 46
4.6.1 Bernoulli Random Variable 46
4.6.2 Binomial Random Variable 47
4.7 Poisson Random Variable 50
4.8 Geometric Random Variable 53
4.9 Expected Value of Sums of Random Variables 56
4.10 Properties of CDF 57
5 Continuous Random Variables 59
5.2 Expectation and Variance of Continuous R.V.s 59
5.3 The Uniform R.V. 59
5.4 Normal R.V.s 59
5.5 Exponential R.V.s 59
5.6 Distribution of a Function of a R.V 59
6 Jointly Distributed Random Variables 61
6.1 Joint Distribution Functions 61
6.2 Independent R.V.s 61
6.3 Sums of Independent R.V.s 61
6.4 Conditional Distributions: Discrete Case 61
6.5 Conditional Distributions: Continuous Case 61
7 Properties of Expectation 63
7.2 Expectation of Sums of R.V.s 63
7.4 Covariance, Variance of Sums and Correlation 63

1 - Combinatorial Analysis

Before introduction of any notion about probability, it is important to go over some basics about counting principles.

1.2 The Basic Principle of Counting

Question 1. A community consists of 10 women, each of whom has 3 children. How many children are present in total?

This simple diagram shows that there are $10 \cdot 3=30$ children. This is based on the following fact.

The Basic Principle of Counting: Suppose that two experiments are to be performed. Then if experiment 1 can result in any one of m possible outcomes and if, for each outcome of experiment 1 , there are n possible outcomes of experiment 2 , then together there are $m \cdot n$ possible outcomes.

The Generalized Basic Principle of Counting: Suppose that r experiments are to be performed. If
$1^{s t}$ experiment may result in n_{1} possible outcomes, $2^{\text {nd }}$ experiment may result in n_{2} possible outcomes,
$r^{\text {th }}$ experiment may result in n_{r} possible outcomes,
then there is a total of

$$
n_{1} \cdot n_{2} \cdot \ldots \cdot n_{r}
$$

possible outcomes of r experiments.

- Example 1.1 i. How many different 2 digit-3 letter- 2 digit licence plates are possible? (No restriction) (e.g. 34 ABC 01)

10	10	29	29	29	10	10
\uparrow						
Exp. 1	Exp. 2	E. 3	E. 4	E. 5	E. 6	E. 7

So there are $10^{4} \cdot 29^{3}$ such plates.
ii. How many different 2 digit- 3 letter- 2 digit licence plates are possible if no repetition of letters is allowed?

10	10	29	28	27	10	10
\uparrow						
Exp. 1	Exp. 2	E. 3	E. 4	E. 5	E. 6	E. 7

So there are $10^{4} \cdot 29 \cdot 28 \cdot 27$ such plates.

