May, 2018

IŞIK UNIVERSITY, MATH 230 FINAL EXAM

Q1	Q2	Student ID:		Row No:		
Q3	Q4	$\mathbf{Q5}$	$ \mathbf{Q6} $	TOTAL		
Last Name:	1	First Name:		<u> </u>		
I pledge my honour that I have not violated the honour code during this examination. Signature :						
Bu sınavda onur şerefim üzerine y	yasamızı ihlal et yemin ederim.	Da	° Ò			
1. (10 points) Determine whether the following statements are True or False. Circle T or F . No explanation is required. Let A , B , and A_i denote events in a sample space S and let $\mathbb{P}(.)$ denote a probability measure on S .						

(*Note:* A statement is assumed to be true if it is true in any possible case, and it is assumed to be false if it fails in at least one case.):

1

i.	An exponential random variable has no memory.	T	F
ii.	For a random variable X, we have $\mathbb{E}(X^2) < (E(X))^2$.	Т	F
iii.	Variance can be negative for some random variables.	T	F
iv.	Continuous random variables have non-zero PMFs.	T	F
v.	CDF is a decreasing function.	T	F
vi.	If $f(x)$ is a PDF, then the values of $f(x)$ can be greater than 1.	T	F
vii.	For a discrete random variable X and $a \in S_X$, always $\mathbb{P}(X < a) = \mathbb{P}(X \le a)$.	T	F
viii.	For a continuous random variable X and $a \in S_X$, always $\mathbb{P}(X < a) = \mathbb{P}(X \le a)$.	T	F
ix.	If Z is a standard Gaussian then $\mathbb{P}(Z < 0) = \mathbb{P}(Z > 0)$.	T	F
<i>x</i> .	If X, Y are discrete and independent random variables , then we have $\mathbb{P}(X = 2, Y = 3) = \mathbb{P}(X = 2)\mathbb{P}(Y = 3)$.	T	F

Student's Name :____

2. (16 pts) Data shows that 20% of the e-mail a person receives is spam. We also know that 70% of spam e-mails contain words such as lottery, win, notification etc while only 5% of non-spam e-mails contain such words. Given that a message includes one of these words, what is the probability that it is spam? Formulate and solve the problem using conditional probabilities.

3. (16 points) Suppose X and Y are jointly continuous random variables with the joint of $\underline{\text{CDF}}$

$$F(x) = \begin{cases} \frac{1}{2}x^2y + \frac{1}{2}xy^3 & , 0 \le x \le 1, \quad 0 \le y \le 1, \\\\ \frac{1}{2}x^2 + \frac{1}{2}x & , 0 \le x \le 1, \quad y \ge 1, \\\\ \frac{1}{2}y + \frac{1}{2}y^3 & , 0 \le y \le 1, \quad x \ge 1, \\\\ 0 & , \text{otherwise.} \end{cases}$$

Find the probability $\mathbb{P}(X < Y)$.

Student's Name :_

- 4. (20 points)
 - i. Suppose that the number of rain drops in a certain area in a mild rain is a Poisson random variable with an average of 120 drops in 2 minutes. What is the probability of at most 3 drops in 3 minutes on the same area?

ii. An operator at a call center is asked to dial random phone numbers to sell a product until someone answers. Statistics shows that 1 out of every 5 calls answer these type of promotional calls. What is the probability that the operator will have to dial at least 8 times?

- 5. (20 pts)
- i. Suppose X is a random variable with the distribution $X \sim N(2,9)$ and Y = 2X 1. Find the mean and variance of Y. What is the probability $\mathbb{P}(Y < 2)$?

ii. Suppose that waiting time in a que of a call center is an exponential random variable with an average waiting time of 5 minutes. What is the probability that you have to wait at least 10 minutes when you call this call center?

6. (18 pts) Suppose X and Y are jointly continuous random variables with the joint PDF

$$f(x) = \begin{cases} c x^2 y & , 0 \le y \le x, \quad 0 \le y \le 1, \\ 0 & , \text{otherwise,} \end{cases}$$

where c is a constant.

i. What is the value of c?

ii. Are X and Y independent?

iii. What is the conditional density $f_{X|Y}(x|1/2)$?