IŞIK UNIVERSITY, MATH 230 FINAL EXAM

Q1	Q2	Student ID: Row No:				
Q3	Bonus					
Last Name:		First Name:	S.			
I pledge my honour that I have not violated the honour code during this examination.						
			Signature :			
	yasamızı ihlal etn	nediğime	5			
şerefim üzerine y	emm ederim.					

- 1. (18 points) There is a toll bridge where the vehicles are charged by an automated license-plate-reading system. The system scan each vehicle's plate and charge the toll from their accounts. However the system may fail and may not read the license plate 1 of every 50 vehicles. For a quality check, we observe the next 20 vehicles passing through the bridge.
 - i. What is the exact probability that the system fails at most 2 times, that is, it won't be able to read the plates of at most 2 of the vehicles?

ii. Find the probability that the system fails at most 2 times by a Poisson approximation.

Circle 7 a samp	ints) Determine whether the following statements are True or False. Γ or \mathbf{F} . No explanation is required. Let A , B , and A_i denote events in le space S , let $\mathbb{P}(.)$ denote a probability measure and $\mathbb{E}(.)$ denote the ation on S .		
•	A statement is assumed to be true if it is true in any possible case, is assumed to be false if it fails in at least one case.):		
i.	If X is a continuous random variable and x_0 is any point in the range of X, then $\mathbb{P}(X = x_0) = 0$.	Т	F
ii.	If X is a discrete random variable, then $P(X \le a) = P(X < a)$ for any constant a,	Т	F
iii.	$\mathbb{E}(X - \mathbb{E}(X)) = 0$ for any random variable X.	Т	F
iv.	If, for two random variables X and Y, $X \ge Y$, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$.	Т	F
v.	If X and Y are two independent random variables, then the events $(X > 1)$ and $(Y > 1)$ are independent.	Т	F
vi.	If X and Y are 2 discrete random variables then their joint PMF, $p_{X,Y}$, is the product of their marginal PMFs.	Т	F
vii.	If X and Y are 2 jointly continuous random variables then their joint PDF satisfies $0 \le f_{X,Y}(x,y) \le 1$.	Т	F
viii.	If X is a Gaussian with variance σ^2 and $\mathbb{P}(X > a) = \mathbb{P}(X < a)$ then $Y = (X - a)/\sigma^2$ is a standard Gaussian.	Т	F
ix.	If Z is a standard Gaussian then $\mathbb{P}(Z < 0) = \mathbb{P}(Z > 0)$.	Т	F
x.	Variance can be negative for some random variables.	Т	F

Student's Name :_____

3. (20 points) Let X and Y be jointly continuous random variables with the joint density

$$f_{X,Y}(x,y) = \begin{cases} \lambda \, xy^2 & , 0 \le x \le y \le 1, \\ 0 & , \text{ otherwise} \end{cases}$$

- i. Find the value of the constant λ ?
- ii. What are the marginal probability density functions?

- iii. Find the conditional probability density $f_{Y|X}(y|x)$.
- iv. Calculate the probability $\mathbb{P}\left(Y > \frac{3}{4} \middle| X = \frac{1}{2}\right)$.
- v. Are X and Y independent? State with reasons?

BONUS (10 puan) Evaluate the following integral:

 $\int_{2}^{5} e^{\frac{(x-3)^2}{8}} dx$ & 344c Soorthoo,

$ \mathbf{Q4} $	Q5	Student ID:	Row No:
$\mathbf{Q6}$			S.S.
Last Name:		First Name:	

- 4. (18 points) There are 10 dice and 2 of them are biased. They are biased in the following particular way: for these biased dice "6" occurs half of the times and "1, 2, 3, 4 and 5" show with equal probability. Now, we randomly chose one die out of these 10 dice and we roll it. ("biased": hileli)
 - i. What is the probability that we get a 6?

ii. If we get a 6, what is the probability that it is one of the biased dice?

iii. If we get a 2, what is the probability that it is NOT one of the biased dice?

5. (18 points) A function is defined in the following way:

$$f(x) = \begin{cases} a \cdot 3^x & , x < 0, \\ a \cdot 3^{-x} & , x \ge 0. \end{cases}$$

i. What does a need to be so that the function is a probability density function (PDF) of a random variable X?

ii. Calculate the Cumulative Distribution Function.

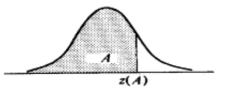
iii. Calculate the expected value $\mathbb{E}(X)$.

Student's Name :_____

- 6. (16 points)
 - i. A robot's life time until its first technical problem (breaking down) is an exponential random variable X with parameter λ . It is known that $\mathbb{P}(X > 6) = 0.3$. What is the probability the robot breaks down within the first 4 years of production?

ii. A real number is selected with respect to a normal distribution with mean 8 and variance 36. What is the probability that the square of the selected number is greater than 100?

Entry is area A under the standard normal curve from $-\infty$ to z(A)



z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9171
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	,9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9851
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9910
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9980
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9992
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9993
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

NOTE: The density of a Gaussian random variable is $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$.