IŞIK UNIVERSITY, MATH 230 MIDTERM EXAM II

Q1	$\mathbf{Q2}$	Student ID:		Row No:
Q3				
Last Name:		First Name:		
I pledge my honour that I have not violated the honour code during this examination.			Signature :	
Bu sınavda onur şerefim üzerine y	yasamızı ihlal etn zemin ederim.			

1. (14 points)

i. The times of the finishers in the Istanbul 10-km marathon are normally distributed with mean 61 minutes and standard deviation 9 minutes. Determine the percentage of finishers with times between 50 and 70 minutes.

ii. X is a random variable uniformly distributed over the interval [2,7]. What is the probability that $\mathbb{P}(0 < X < 4)$?

2.

(10 pc Circle ' sample (Note. and it	bints) Determine whether the following statements are True or False. T or F . No explanation is required. Let A , B , and A_i denote events in a space S and let $\mathbb{P}(.)$ denote a probability measure on S . : A statement is assumed to be true if it is true in any possible case, is assumed to be false if it fails in at least one case.):		
i.	If, for two random variables X and Y, $\mathbb{E}(X) = \mathbb{E}(Y)$, then $X = Y$.	Т	F
ii.	For any random variable X , $Var(X) \ge 0$.	Т	F
iii.	Cumulative distribution function is increasing (non-decreasing).	Т	F
iv.	PDF is a positive (non-negative) function.	Т	F
v.	For any random variable X , $\mathbb{E}(X - \mathbb{E}(X)) = 0$.	Т	F
vi.	We can define a uniform random variable on the interval $[0,\infty)$.	Т	F
vii.	Exponential random variable is a discrete random variable.	Т	F
viii.	You play the dart game, and X is the first time you hit the board. X is a Poisson random variable.	Т	F
ix.	If X is a continuous random variable, then for any point a, $\mathbb{P}(X = a) = 0$.	Т	F
<i>x</i> .	If X is a Gaussian, then $Y = 2X$ is also a Gaussian with the same mean as X.	Т	F

Student's Name :____

3. (28 points) Let X be a continuous random variable with the cumulative distribution function (CDF)

$$F(x) = \begin{cases} 0 & , x < -1, \\ \frac{x^2}{2} + x + \frac{1}{2} & , -1 \le x < 0 \\ -\frac{x^2}{2} + x + \frac{1}{2} & , 0 \le x < 1, \\ 1 & , x \ge 1 \end{cases}$$

i. Find the probability density function (PDF) of X.

ii. Find the probability $\mathbb{P}(-1/2 < X < 2)$.

Department of Mathematics, Isik University

iii.

iii. Find its expectation $\mathbb{E}(X)$.

Find its variance Var(X).

$Q4 \mid$	Q5	Student ID:	Row No:
$\mathbf{Q6}$	Q7		
Last Name:		First Name:	

- 4. (12 points) In the experiment of rolling a fair die twice, let X be the maximum of the two numbers obtained.
 - i. Determine and sketch the probability mass function (PMF).

ii. Determine and sketch the cumulative distribution function (CDF).

5. (12 points) The probability mass function of a discrete random variable X is given by

$$p(x) = \begin{cases} \frac{x}{15} & , x = 1, 2, 3, 4, 5, \\ 0 & , otherwise. \end{cases}$$

Calculate the expected value of X(6-X).

6. (12 points) The probability mass function of a discrete random variable X is given by

$$p(x) = \begin{cases} \frac{(|x|+1)^2}{27} & , x = -2, -1, 0, 1, 2, \\ 0 & , otherwise. \end{cases}$$

Find the variance of X.

Department of Mathematics, Isik University

Student's Name :_____

7. (12 points)

i. Two fair dice are rolled 10 times. What is the probability that at least one 6 (on either die) shows in exactly five of these 10 rolls?

ii. Suppose that X is a Poisson random variable with

 $\mathbb{P}(X=1) = \mathbb{P}(X=3).$

Find $\mathbb{P}(X=5)$.