Exam Duration: 1 hr. and 45 min.	Q1	$\mathbf{Q2}$		Row No:
Last Name:	First Name:			Student ID:

Q1. (10 pt) Graph the function f(x) = -|x+2| + 1 using the techniques of shifting and reflecting.

Q.2 Evaluate the following limits(Do not use the L'Hopital's Rule).

a. (6 pt)
$$\lim_{x\to 0^-} \frac{\sin|x|}{x}$$

b. (6 pt)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

c. (6 pt)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin 2x}$$

Exam Duration: 1 hr. and 45 min.	Q3	Q4		Row No:
Last Name:	First Name:			tudent ID:

Q3. Find the domain of the following functions:

a. (12 pt)
$$f(x) = \frac{\sqrt{x^2 - x - 6}}{x - 5}$$

b. (6 pt)
$$f(x) = \sqrt[3]{3 + \sqrt{x}}$$

Q4. Evaluate the followings:

a.
$$(5 \text{ pt}) \tan \left(\cos^{-1} \frac{3}{5}\right)$$

b.
$$(5 \text{ pt}) \sin^{-1} \left(\sin \frac{3\pi}{4} \right)$$
.

Exam Duration: 1 hr. and 45 min.	$\mathbf{Q5}$	Q6	(Q7		Row No:
Last Name:	First Name:				Stu	dent ID:

Q5. (8 pt) Find the inverse of the function $f(x) = \frac{5(1 - e^{-2x})}{3}$.

Q6. (10 pt) Define f(2) in a way that extends $f(x) = \frac{x^3 - 8}{x^2 - 4}$ to be continuous at every x.

Q7. (10 pt) Show that the equation $1000x^4 + 10x = 1$ has at least one solution.

Exam Duration: 1 hr. and 45 min.	$\mathbf{Q8}$			Row No:
Last Name:	First Name:		St	udent ID:

Q8. Suppose you are given the function

$$f(x) = \begin{cases} \frac{2x - 4}{x^2 - 4} & \text{if } x < 2 \\ b & \text{if } x = 2 \end{cases}$$

$$\sqrt{ax^3 - \frac{3}{4}} & \text{if } x > 2.$$

where both a and b are constants.

- a. (8 pt) Find the value of a so that $\lim_{x\to 2} f(x)$ exists.
- b. (8 pt) Find the value of b so that the function f(x) is continuous at x=2.

