Exam Duration: 1 hr. and 45 min.	Q1		$\mathbf{Q2}$		Q3		Row No:
Last Name:	First Name:				Student ID:		

IŞIK UNIVERSITY, MATH 101 FINAL EXAM

Q.1. (10 pt) Find the derivative of the function $f(x) = \sqrt{x}$ by using the definition of derivative (No other methods will be excepted.).

 $\mathbf{Q.2}~(8~\mathrm{pt})$ Evaluate the integral:

$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}}$$

Q.3 (12 pt) Given the function

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x < -1\\ \cos(\pi x) & \text{if } -1 \le x < 2\\ \sqrt{x-1} & \text{if } 2 \le x \le 5\\ x^2 - 4x & \text{if } x > 5. \end{cases}$$

a. Is f continuous at x = -1? Explain why?

b. Is f continuous at x = 2? Explain why?

c. Is f continuous at x = 5? Explain why?

Exam Duration: 1 hr. and 45 min.	Q4	Row No:
Last Name:	First Name:	Student ID:

Q4. (18 pt) Given the function $f(x) = \frac{2x+1}{x-1}$.

- a. Find the domain of f.
- b. Find x- and y-intercepts.
- c. Find all critical points.
- d. Determine the intervals on which f is decreasing or increasing.
- e. Determine the intervals on which f is concave up or down.
- f. Find asymptotes.
- g. Graph f(x) using information obtained (a)-(g). (Show details clearly on the graph to receive full credit.)

Exam Duration: 1 hr. and 45 min.	Q5	Row No:	
Last Name:	First Name:		Student ID:

Q5. (13 pt) By using limits, find the vertical, horizontal, and oblique asymptotes of the function $f(x) = \frac{x^2 - 1}{x - 3}$, if any.

Exam Duration: 1 hr. and 45 min.	Q6	Row No:
Last Name:	First Name:	Student ID:

Q6. (14 pt) Find the function f(x) whose derivative is $f'(x) = 3\cos^2 x$ and that satisfies $f(0) = \frac{\pi}{8}$.

Exam Duration: 1 hr. and 45 min.	$\mathbf{Q7}$		$\mathbf{Q8}$	Q9		Row No:	
Last Name:	First Name:			Student ID:			

Q.7 (15 pt) Find the area of the region bounded by the curves $x = y^2 + 1$, x = 0, y = 0and y = 1.

Q.8 Evaluate the integrals:

a. (5 pt)
$$\int \frac{1}{x^2} \cos\left(1 + \frac{1}{x}\right) dx$$

b. (5 pt) $\int \frac{e^{2x}}{(1 + e^x)^{1/3}} dx$

Q.9 (Bonus, extra 10 pt) Evaluate the limit:

$$\lim_{x \to \pi} \frac{\int_{\pi}^{x} \frac{1}{2 + \cos t} \, dt}{x - \pi}$$