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Procrustes analysis is a least-squares solution method of the similarity 
transformation parameters among two or more model point matrices, 
satisfying their maximal agreement.

• Algorithmically, there is no limit for the dimension  k of  the model point 
coordinates (In Geodetic Sciences usually  k = 2,3).

• It has a linear functional model. No need to initial approximations for 
unknowns.

• It does not define and solve the classical normal equations system.

Introduction
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Who is Proctustes?

The name of the method comes from Greek Mythology.

Procrustes, or "one who stretches" was 
a robber in Greek Mythology. He preyed 
on his victims offered a magical bed that 
would fit any guest. He then either 
stretched the guests or cut off their limbs 
to make them fit perfectly into the bed. 
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The method was explained and named by P. Schoenemann who is a scientist in 
the Quantitative Psychology area.

(Schoenemann, 1966)
Orthogonal Procrustes E = AT – B

(Schoenemann and Carroll, 1970)
Extended Orthogonal Procrustes

Similar methods in Computer Vision and Robotics (Arun et al.1987, Horn et 
al.1988)

(Gower, 1975, Ten Berge, 1977)
Generalized Orthogonal Procrustes

(Lissitz et al., 1976, Koschat and Swayne, 1991, Goodall, 1991)
Weighted Procrustes

BtjcATE T 
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Extended Orthogonal Procrustes Analysis (EOP)
The problem is least squares fitting of a given matrix A to another given matrix B:

BtjcATE T 

jT = [1 1 … 1]  is unit vector  (1 x p)
A and  B are point matrices (p x k)
E is random error matrix (p x k)
T is unknown orthogonal rotation matrix (k x k)  
t is unknown translation vector (k x 1) 
c is unknown scale factor  (scalar)
p is the number of common points
k is the number of dimensions

In order to obtain the least squares estimation of the unknowns (T, t, c) let us write 
the Lagrangean function:

    ITTLtrEEtrF TT 

       ITTLtrBtjcATBtjcATtrF TTTT       

(1)

(2)

(3)
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The derivations of the Lagrangean function with respect to unknowns must be set 
to zero in order to satisfy  [vv]=min condition:

  0
T
F



 TTTTT2 LLTjtcA2BcA2ATAc2

jjpjAcT2jB2tp2 TTTT 

      ,      0

t
F

      0
c
F



 TTTTTT tjATtr2ATBtr2ATATtrc2

(5)

(6)

(4)

Symm.

  0
2

LLtjAcTBAcTTAATc
T

TTTTTTT2 




Symm.

Left multiply by TT

      TT
TT2TTTTT

T

2
LLTAATctjAcTBAcT

2
LL








 


  

Symm. Symm.
Symm.Must be symm.

(7)

(8)
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0
t
F



 jAcT2jB2tp2 TTT

In equation (5):

  pjcATB Tt (9)

.symmtjATBAT TTTTT  substitution

(11)

(10)

.symmAT
p
jjAcTB

p
jjATBAT

T
TT

T
TTTT 

















  

Symm.Must be symmetric

.symmB
p
jjIAT
T

TT 







  

Let say S

symmSTT 

(k x k) dimensional

TSST TT 
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TSST TT 

TTSS T TTT SSTT 

Left multiply by T Right multiply by TT

TTT TSSTSS 
Symm. Symm.

(12)

svd{SST} = T svd{STS} TT svd{ }: Singular Value Decomposition

VDSVT = TWDSWTTT DS : diagonal eigenvalue matrix
V,W : orthonormal eigenvector matrices

  s
T

T
T DDVDWB

p
jjIAsvdSsvd 

















      ,        

TWV  TVWT  (13)
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





































  A
p
jjIA

 B 
p
jjIAT

c
T

T

T
TT

tr

tr
(14)

Finally, translation vector can be solved from Equation (9)

  pjcATB Tt (15)

TVWT    pjcATB Tt

      0
c
F



 TTTTTT tjATtr2ATBtr2ATATtrc2

substitution

Equation (9)
(13)
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Weighted Extended Orthogonal Procrustes Analysis (WEOP)
WEOP can directly calculate the least-squares estimation of the similarity 
transformation parameters between two model point matrices, in which points are 
differently weighted.

     mincctr K
T

P
TT  W BtjATWBtjAT

ITTTT  TT

LS cond.

Orthogonality cond.p x p k x k

QQW T
P  ( Cholesky decomposition )

     minBjtcATBjtcATtr TTTT   I   QQ 

     mintTctTctr TTT   QB j QQA QB j QQA (17)

(16)

• Let us assume that  WK = I      [If               , solution is iterative (Koschat et. 1991)]
• Let us treat to obtain a similar expression as EOP

IW K



Devrim Akca, 01.07.2003, Praktikum Generalized Procrustes Analysis and its Applications in Photogrammetry 12

By substituting   Aw = Q.A ,   Bw = Q.B ,   and   jw = Q.j

     mintTctTctr w
T

ww
T

w
T

ww   Bj A Bj A 

This is the same expression as Extended Orthogonal Procrustes (EOP) analysis. 
Therefore this problem can be solved by the same formulas:

T

kxk

T
w

w
T
w

T
wwT

w VDWB
jj
jjIAsvd 

















    

TV WT 



































 w

w
T
w

T
wwT

ww
w

T
w

T
wwT

w
T trtr  A

jj
jjIA  B 

jj
jjIATc

 
w

T
w

wT
ww jj

jTcABt 

(19)

(21)

(20)

(18)
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Generalized Orthogonal Procrustes Analysis (GP)
GP provides the least-squares correspondence of m (m>2) model points matrices. 
It satisfies the following least squares objective function

          mincccctr
m

1i

m

1ij

T
jjjj

T
iiii

TT
jjjj

T
iiii 









 
 

jtTAjtTAjtTAjtTA  

The solution of the problem is searching of 
the unknown optimal matrix Z (also named 
consensus matrix).

T1 c1 t1

A1 A2

Am

Z

T2 c2 t2

Tm cm tm

GP concept (Crosilla&Beinat, 2002)

 ,...,m2,1icˆ T
iiiiii     ,      jtTAAEZ

    KP
2

i ,0N~vec QQ ΣE 

Covariance matrix
Kronocker product
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In the literature, there are many solution methods. Only one of them will be 
explained here.





m

1i
i

ˆ
m
1 AC

    



m

ji
ji

T

ji

m

ji

2

ji
ˆˆˆˆtrˆˆ AAAA AA 

    



m

1i
i

T

i

m

1i

2

i
ˆˆtrmˆm CACA  CA 

Geometrical centroid of 
the transformed matrices

The above two objective functions are 
equivalent (Kristof and Wingersky, 
1971, Borg and Groenen, 1997).

The centroid  C corresponds the least 
squares estimation  of the true value  Z
(Crosilla and Beinat 2002).

Initialize:
Define the initial centroid C
Iterate:
(1) Direct solution of similarity 
transformation parameters of each Ai
with respect to the centroid  C by means 
of WEOP solution

(2) After the calculation of each matrix is 
carried out, iterative updating of the 
centroid  C
Until: Global convergence, i.e. 
stabilization of the centroid  C

Algorithmically, similar to Separate 
Adjustment (Wang, Clarke 2001).
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Case 1: Different weights among the models

     IQ     ,     IQ     ,      QQ ΣE  PiKiKiPi
2

ii ,0N~vec (diagonal)

Each row of         has different dispersion with respect to the true value  Z and 
the dispersion varies for each model points matrix  i=1,2,…,m. 

In this case, least-squares objective function and centroid C are as follows:

iÂ

1
Pii

m

1i
ii

1m

1i
i

ˆ 























  QP         ,        APPC

     minˆˆtr
m

1i
ii

T

i 


CAPCA (22)

(23)
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Case 2: Missing points/different weights among the models

In real applications, all of the  p points could not be visible in all of the model 
points matrices  A1 , A2 , …, Am . A diagonal binary (p x p) matrix  Mi can be  
associated to every matrix  Ai, in which the diagonal elements are 1 or 0 , according 
to existence or absence of the point in the  i-th model (Commandeur (1991).


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In the case of combined weighted/missing point solution, least-squares objective 
function and centroid C are as follows:

 ADDC 















 







m

1i
ii

1m

1i
i

ˆ

     minˆˆtr
m

1i
ii

T

i 


CADCA

1
Piiiiiii
 QP      ,     MPPMD

(diagonal)

(25)

(26)

(24)
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Case 3: Missing points/different weights among the models, and
different weights among the coordinate components 

(Beinat, Crosilla, 2002)

     IQ        IQ     ,       QQ ΣE  KiPiKiPi
2

ii and,0N~vec

(diagonal)

In this case, least-squares objective function and centroid C are as follows:

iiiii MPPMD  1
Pii
QP 1

Kii
 QK

     minˆˆtr
m

1i
iii

T

i 


K CADCA

   
















 





m

i
iii

1m

1i
ii

ˆvecvec ADKDKC

(kp x kp) (kp x 1)

(27)

(28)

(29)

(30)
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Applications in Photogrammetry

• Registration of  laser scanner point clouds (Beinat, Crosilla, 2001)

• An adaptation of GP method into block adjustment by independent models 
(Crosilla, Beinat, 2002). 

GP is  a  free solution, since the consensus matrix  Z is in any orientation-
position-scale in the k-dimensional space. Controversially,  conventional 
block adjustment by independent models solution needs the datum 
definition. 
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BAe  TtjTc

Example 1:  synthetic data

 mm5,0N~    e p = 100 points
k =  3 dimension

Iterations Computation time (sec.)
Least-squares adjustment 3 0.09
WEOP direct 0.03

Solution strategy for least-squares similarity transformation:  
• initial approximations for unknowns:  closed-form solution (Dewitt, 1996) 
• classic solution: normal matrix partitioning, Cholesky decomposition, and back-substitution
• after the iterations,  QXX calculation for theoretical precision 
• Control points are treated as stochastic quantities 

Numerically, same results for the unknown transformation parameters.

Computational Cores:  
• WEOP: Singular Value Decomposition of  (k x k) matrix
• Least-squares adjustment: well-known solution of  [(7+pk) x (7+pk)] normal eq. matrix
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Example 2: real data (laser scanner)

 5...,,2,1ic T
iiiii     ,    ZjtTAe    I,0N~vec 2

i  Σe mm3

m = 5 models
p  = 10 points
k = 3 dimension

Iterations Computation
times (sec.)

 σ0 (mm.)

Block adjustment by
independent models *

3 0.01 3.4

Generalized Orthogonal
Procrustes (GP) **

6 0.01 2.2

* datum defined by 3 of the points  || the comp.time also includes QXX calculation 
** free solution  ||  Sigma naught is with respect to centroid  C

For block adjustment by independent models method:
For N11 : m (u x u ) = 5 . (7 x 7) = 245   variables
For N12 : (m u) x (p k) = (5 .7) x (10 . 3) = 1050 variables
For N22 : p k = 10 . 3 = 30     variables

Totally = 10 600 Bytes
For Generalized Orthogonal Procrustes (GP) method:

For unknowns of each model : m u = 5 . 7 = 35 variables
For centroid  C : p k = 10 . 3 = 30 variables

Totally = 520 Bytes
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Example 3:  synthetic data

 9...,,2,1ic T
iiiii     ,    ZjtTAe  unitless002.0,0N~e    

m = 9 models
p  = 100 points
k = 3 dimension

* 30 control points as stochastic quantities || the comp.time also includes QXX calculation 
** 30 control points (adaptation to block adjustment by independent models Crosilla, Beinat, 2002)  
||  Sigma naughts are with respect to centroid  C

Iterations Computation
times (sec.)

σX
(unitless)

σY
(unitless)

σZ
(unitless)

Block adjustment by
independent models  *

5 1.032 0.0018 0.0018 0.0019

Generalized Orthogonal
Procrustes (GP)  **

35 1.953 0.0017 0.0020 0.0019

In the case of datum-definition, very slow convergence behavior of the 
Generalized Orthogonal Procrustes (GP) method compared to conventional block 
adjustment solution can be shown.
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Comparison of GP method with the Conventional LS Solution

Generalized Procrustes Conventional LS

Linearity Direct solution Non-linear, needs to initial
approx. Closed-form sol.

Limit for number of  k
dimensions

No limit , flexible For  k > 3 , needs re-
arrangement of the model

Datum definition Free solution Can be achievable by means of
inner constraints

Stochastic model Weak Powerful

Computational core SVD of (k x k) matrix Solution of (u x u) normal
matrix

Convergence Slow Quick

Speed Almost equal

Memory requirement Drastically less than More than

Theoretical Precision
indicators

Weak Powerful

Reliability indicators Not available Powerful
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Conclusions

The most important disadvantage of the Procrustes method is lack of reliability 
criterion in order to detect and localize the blunders, which might be included 
by the data set. Without such a tool, the results that produced by the Procrustes 
method can be wrong in the case of existence of blunders in the data set.

THANK   YOU!


