

HIGH DEFINITION 3D-SCANNING OF ARTS OBJECTS AND PAINTINGS

Devrim Akca¹, Armin Gruen¹, Bernd Breuckmann², and Christian Lahanier³

¹Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, ²Breuckmann GmbH, Meersburg, Germany ³Centre de Rcherche et de Restauration des Musées de France, France

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Why 3D modeling of Cultural Heritage objects? Case of lost or damage

Buddha of Bamiyan, Afghanistan:

Before March 2001:

- 53 m high
- tallest representation of a standing Buddha
- niche full of frescos

- After March 2001:
- empty niche
- no more frescos
- risk of collapse

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

3D modeling from old images

Why 3D modeling of Cultural Heritage objects? Case of physical replica

Why 3D modeling of Cultural Heritage objects?

....

- Documentation
- Education resources
- Interaction without risk of damage
- Virtual tourism and virtual museums
- Maintenance

3D modeling of Cultural Heritage objects Active Sensors - Coded Structural Light System

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

3D modeling of Cultural Heritage objects Active Sensors – Triangulation based systems

Triangulation based systems	Laser light	Coded structured light
Weight and price	Identical	Identical
Speed		Faster
Sensitivity to ambient light	Less	
Speckle noise		Less
Penetration into object surface		No
Imaging for texture mapping		Yes
Depth of view	Larger	
Eye safety		Better

Laser light D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

The 3D modeling work

Goal:

Generation of precise digital model for visualization, documentation and possible physical replica production

- Herakles statue
- ca 1 m height
- Antalya Museum

- Khmer head
- ca 30 cm height
- Rietberg Museum, Zurich

- Lady Praying
- 20x30 cm
- Louvre Museum, Paris

Active Sensors: Breuckmann systems

	optoTOP-HE	optoTOP-SE ⁽³⁾	triTOS ⁽³⁾
Field of View (mm)	480x360	400x315	80x60
Depth of View (mm)	320	260	40
Acquisition time (sec)	<1	<1	<1
Weight (kg)	2-3	2-3	2-3
Digitization (points)	1280x1024 ⁽¹⁾	1280x1024	1280x1024
Base length (mm)	600	300	50
Triangulation angle (deg)	30 ⁰	30 ⁰	30 ⁰
Projector	128 order sinus patterns	128 order sinus patterns	128 order sinus patterns
Lamp	100W halogen	100W halogen	100W halogen
Lateral resolution (µm)	~350	~300	~60
Feature accuracy (relative)	1/15000	1/10000	1/10000
Feature accuracy (µm)	~45	~50	15

3D modeling of the Weary Herakles statue

http://www.photogrammetry.ethz.ch/research/herakles/

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

The Weary Herakles Statue - Story

- Marble statue of the Greek demi-god Herakles (2nd c.AD).
- Copy of the original bronze statue of famous sculptor Lyssipos of Sicyon (4th c.BC)
- Broken in two parts.
- The upper half, seen in the USA in the early 1980s (Boston Museum of Fine Arts).
- The lower half, excavated in Perge (Antalya, TR) in 1980 by Prof. J. Inan, (now in the Antalya Museum).

The Weary Herakles Statue - Story

- According to Turkish law, Turkish antiquities state property since Ottoman times 1906.
- The Turkish government asked the upper half.
- The Boston MFA refused the petition, saying that:

"the statue may have broken in ancient times and the upper torso may have been taken from Turkey before the year 1906".

Photogrammetry Remote Sensing

Aim of the Project

The Aim

- To record and model both the lower and the upper part and
- bring these partial models together in the computer,
- so that at least there the complete statue could be seen, appreciated and analyzed.
- The lower part in the Antalya Museum was scanned in September 2005.
- Access to the upper part in the Boston MFA was denied.

The Project In cooperation with

Eidgenössische Technische Hochschule Züsizi Soxiss Federal Institute of Technology Zurich

breuckmann 🔟 💻

Data Acquisition

- Digitization in the Antalya Museum in September 2005
- Breuckmann optoTOP-HE coded structural light system

Scanning in the Antalya Museum

- Breuckmann optoTOP-HE system
- 1 $\frac{1}{2}$ days on site work with 67 scans (56+11)
- Each scan 1.25M points
- Totally 83.75M points

scanning

Scanning in the Antalya Museum

optoTOP-HE, very flexible system

Postprocessing Workflow

- Registration
 - + Pairwise registration
 - + Global registration
- Point cloud editing
 - + Cropping the Area Of Interest
 - + Noise reduction
 - + Down-sampling
- Surface triangulation and editing
- Texture Mapping

Visualization

(Geomagic Studio 6)

(Geomagic Studio 6)

(VCLab's 3D Scanning Tool, CNR, Pisa)

Registration – Pairwise registration

• 234 consecutive pairwise LS3D matching. The average sigma naught is 81 microns.

Example: Registration of 1st and 2nd scans Note: 3x3 down-sampling for better visualization

Registration – Global registration

- Global registration with the block adjustment by independent models solution
- Sigma naught 47 microns, in agreement with the system specifications

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Point Cloud Editing – Noise reduction

Point Cloud Editing – Down-sampling

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Surface Triangulation and Editing

• Finally **9.0 million points** => **5.2 million triangles**

• Memory problems with Geomagic if greater number of target triangles, e.g. 10 million

• Data holes due to complexity & inner concave parts

• Filling the holes is the most tedious step of the project

Texture Mapping

- Leica Digilux1, 4Mpixel CCD camera
- The Veawer module of VCLab's 3D Scanning Tool (ISTI-CNR, Pisa, Italy)

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Visualization – (gray shaded)

• Better lighting & shading with PolyWorks IMView.

www.photogrammetry.ethz.ch

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Visualization

Back projection of the 3D model into image space

http://www.photogrammetry.ethz.ch/research/herakles/

Gained experiences

• The coded structural light system is a mature technology and allows high resolution documentation of cultural heritage objects.

Photogrammetry

Remote Sensing

• The hardware component, optoTOP-HE worked well.

- Editing the surface is the most tedious step of the whole modeling pipeline. Need for sophisticated algorithms & software.
- Texture mapping is not fully available in either software.

http://www.photogrammetry.ethz.ch/research/herakles/ D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

Result

http://www.photogrammetry.ethz.ch/research/herakles/

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

3D Modeling of a Khmer Head

http://www.photogrammetry.ethz.ch/research/khmer/

D. Akca, Zurich, 11 July 2007, Optical 3D Measurement Techniques

The Khmer head project

- Bodhisattva Head
- Cambodia Khmer period
- Bayon style, 12th-13th a.c.
- 28 cm in height
- Sandstone
- Collection of Rietberg Museum, Zurich

The Khmer head project – Data acquisition

- Data acquisition: 3-4 hours on site work
- Breuckmann OptoTOP-SE coded structural light system
- 18 scans, each scan 1.3 million points (totally 23.6 million points)

D. Akca, Ljubljana, 5 July 2007, ISPRS Summer School

Point cloud registration

• 52 Pairwise registration with the Least Squares 3D Surface Matching (LS3D) method + global registration (final **28 microns** sigma0_value)

Surface generation & editing

Geomagic Studio

Importing the point clouds Point cloud merging Defining the AOI Noise reduction Down sampling Surface triangulation Surface editing

PolyWorks

Importing the point clouds Surface triangulation

> Surface merging Defining the AOI Surface editing

Texture mapping & visualization

Geomagic Studio

- Full automatic import functionality
- Import
 & merge all the pointclouds
 & noise reduction
- & pointcloud down-sampling
- Surface triangulation: fully 3D and automatic, limited user interaction
- Preserve the high frequency details of the object geometry successfully by considering all points in one processing sweep

PolyWorks

• Data import is not automatic

• Each pointcloud individually imported, subsequently converted to surface by 2.5D triangulation. Each pointcloud interactively rotated to the viewing angle of the data acquisition instant.

+ Advantage: less topological errors

-Disadvantage: partial processing, not one processing sweep

- Merge individual 2.5D surface \rightarrow 3D manifold
- Noise reduction

Geomagic Studio 3.9 million triangles

PolyWorks 0.6 million triangles

	PolyWorks	Geomagic
Data import	Manual	Automatic
Triangulation		
Туре	2.5D	3D
Optimality	Better	
Detail preservation		Better
Topological correctness	Better	
Automatisation		Better
Editing capabilities		Better
Performance	Better	
Visualization	Better	
User friendliness		Better
Stability	Better	

Geomagic Studio 6

The Khmer head project – Texture mapping & Viz

- Special illumination to avoid shadows
- Diffuse reflection
- Texture mapping, in-house developed (by T. Hanusch)

D. Akca, Ljubljana, 5 July 2007, ISPRS Summer School

The Khmer head project – Texture mapping & Viz

Grey shaded model

Texture mapped model

The Khmer head project – Texture mapping & Viz

Picture

3D model

Lady Praying project

Lady Praying project

- **Task**: high resolution digitization of Lady Praying painting, ca. 60 micron point spacing
- FOV of triTOS sensor adapted to the task,

ca. 15-20 micron feature accuracy

- 25 scans
- OPTOCAT used for post-processing
- In spite of ~100 micron depth difference, successful alignment by OPTOCAT.

Lady Praying project

Shaded view of the 3D model

Z-coordinate magnified by a factor of 50

Conclusions

- Coded structural light systems are a good solution for fast and precise object recording and modeling
- Hardware component worked properly with all the surface material (marble, sandstone, painting)
- Reached accuracy (ca 15-50 micron) might be not necessary in some archaeological applications
- Recovered 3D digital models useful for documentation or physical replica
- Employed modeling Software produced reasonable results but any of them is not fully superior to others
- => multiple software should be used as the optimum solution!

Thank you for your attention!

http://www.photogrammetry.ethz.ch