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Abstract A satellite processing platform for high resolution forest assessment
(FORSAT) was developed. It generates the digital surface models (DSMs) of the
forest canopy by advanced processing of the very-high resolution (VHR) optical
satellite imagery and automatically matches the pre- and post-fire DSMs for 3D
change detection. The FORSAT software system can perform the following tasks:
pre-processing, point measurement, orientation, quasi-epipolar image generation,
image matching, DSM extraction, orthoimage generation, photogrammetric resti-
tution either in mono-plotting mode or in stereo models, 3D surface matching,
co-registration, comparison and change detection. It can thoroughly calculate the
planimetric and volumetric changes between the epochs. It supports most of the
VHR optical imagery commonly used for civil applications. Capabilities of
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FORSAT have been tested in two real forest fire cases, where the burned areas are
located in Cyprus and Austria. The geometric characteristics of burned forest areas
have been identified both in 2D plane and 3D volume dimensions, using pre- and
post-fire optical image data from different sensors. The test studies showed that
FORSAT is an operational software capable of providing spatial (3D) and temporal
(4D) information for monitoring of forest fire areas and sustainable forest man-
agement. Beyond the wildfires, it can be used for many other forest information
needs.

1 Introduction

Deforestation is one of the major sources of carbon emission which threatens the
global climate targets. Several satellites and sensors have been used to monitor
deforestation areas. The Advanced Very High Resolution Radiometer (AVHRR) on
board the NOAA-series satellites (Di Maio Mantovani and Setzer 1997), JERS-1
(Almeida-Filho et al. 2005), MODIS on-board the NASA EOS satellites (Anderson
et al. 2005), ASTER (Haboudane and Bahri 2008), Formosat-2 (Baillarin et al.
2008), PALSAR on-board ALOS (Isoguchi et al. 2009) constitute a small set of
examples.

Low to medium resolution level optical images present drawbacks for operation
in the moist tropics and in all weather conditions, synthetic aperture radar
(SAR) data might be seen as an alternative (Santos et al. 2008; Solberg et al. 2013).
Applications of SAR data to map deforestation are generally based on the
assumption that undisturbed forests consistently exhibit higher radar backscatter
than deforested areas. Depending on the stage of the deforestation process (slash-
ing, burning and terrain clearing), this assumption is not always valid, and defor-
ested areas may display a stronger radar return backscatter than primary forest
(Almeida-Filho et al. 2007). Especially, new deforested areas are not unequivocally
detected in some cases (Almeida-Filho et al. 2009).

With over 30 years of directly comparable satellite observations, now freely
available and new imagery being added to the archive every day, Landsat time
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series legacy affords novel opportunities for ecosystem mapping, environmental
monitoring and comparative ecology (Pasquarella et al. 2016). It has been used to
understand the space-time dynamics of deforestation over large areas, but at
moderate resolution (Alves 2002; Ichii et al. 2003; Bodart et al. 2011; Souza et al.
2013).

Measuring the areal extent of deforestation for other than localized areas requires
the use of fine resolution satellite data. An accurate determination of deforestation is
very difficult to achieve by a random sampling analysis of Landsat or similar
resolution data unless a very high percentage of the area to be studied is sampled
(Tucker and Townshend 2000). The very high resolution (VHR) satellite imagery is
an alternative and effective solution (Mora et al. 2013). Availability and metric
capability of the VHR satellite imagery is given in Remondino (2011) and Sefercik
et al. (2013).

Conventional forest inventory contains extensive field work to collect data of
coverage, specie, height, volume, health, damage, change, deforestation, etc. It is
expensive and time consuming (Eva et al. 2010; Koch 2010). Although the tradi-
tional forest inventory methods are the most accurate, they are neither agile nor
economic. Alternative management strategies are required (Mondal et al. 2010).
The Global Forest Watch (GFW) is one of the example of the worldwide responses
to this demand, which is an open-source web application to monitor global forests
in near real-time (http://www.globalforestwatch.org). It is an initiative of the World
Resources Institute (WRI) with partners including Google, Esri and many other
academic, non-profit, public and private organizations. The Global Forest
Observations Initiative (GFOI) is another international collaboration to support
countries to develop their national forest monitoring systems (http://www.gfoi.org/).
The satellite data primarily comes from USGS Landsat series, and EU Copernicus
Programme ESA Sentinel-1 radar and Sentinel-2 optical series. Japan (JAXA),
Brazil (INPE), China (CRESDA), France (CNES), Italy (ASI), Canada (CSA) and
Germany (DLR) provides additional contributions.

Deforestation is caused by ever-increasing activities of the growing human
population (Pahari and Murai 1999), its density (Svancara et al. 2009) and agri-
cultural colonisation (Millington et al. 2003). Their effects are seen in long terms.
On the other hand, the forest fire, which is another main cause of deforestation, is a
rapid event whose effects are seen in very short terms (Lee 2008). A rapid, effective
and economic way of change detection is required in order to understand the pre-
and post-fire changes of forest areas. The VHR satellite imagery which allows
stereo and triplet acquisitions at very fine spatial resolutions offers less expensive,
faster and more agile remote sensing capacities than the alternative technologies,
thereby providing an optimum solution for such change detection tasks. Additional
advantages are no overflight permissions needed, an optimum ground coverage
capacity versus spatial resolution, and repetition of image acquisitions on a certain
area of interest until cloud coverage is free. FORSAT (a satellite processing
platform for high resolution forest assessment) is an operational software
system designed to fulfil these special requirements in the forestry sector, which
was originally a research and development project funded by Eurostars
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(https://www.eurostars-eureka.eu/) and the European Commission. It is a stan-
dalone satellite-based monitoring capacity specifically for 3D forest cover mapping
and change detection applications. Moreover, it is a processing platform, where
high performance and well-studied methods of the terrestrial and airborne tech-
niques are coupled with the spaceborne VHR image data, to obtain a single source
forest information system.

The FORSAT software can generate digital surface models (DSM) of forest
canopy in high resolution and accuracy. By comparing pre- and post-fire DSMs, the
system allows automatic 3D change detection of forest and non-forest areas along
with change both in area and volume dimensions.

In the next section, state-of-the-art methods for forest fire prediction, detection,
monitoring and measurement are reviewed. In the third section, the FORSAT
methodology is presented with its algorithmic details. Performance of the FORSAT
software was tested by executing case studies at two forest fire areas located in
Cyprus and Austria. The experimental results have proved that public bodies and
private organisations can use the VHR satellite data for many forest information
needs. In the fourth section, the results achieved on the test cases are reported and
discussed. The final conclusions are given in the fifth section.

2 Forest Fire Prediction, Detection, Monitoring
and Measurement

Thanks to the rising public awareness and comprehensive forest protection pro-
grams, the global vegetation showed a remarkable greening (+0.28% per year) over
browning (−0.14% per year) based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) vegetation index data from 2011 to 2015 (Zhang et al.
2017). The forest fire is one of the major threats that attenuate this global greening
trend. Human-started fires represent the vast majority of wildfires whose distance
from built-up areas becomes closer-and-closer by the time (Mancini et al. 2018).

The susceptibility of forest fires increases with direct human activities, road
accessibility, forest fragmentation, habitat loss and similar causes (Mancini et al.
2018; Silva Junior et al. 2018). This list can be extended. All these factors together
with meteorological data (Yu et al. 2017), weather variables (Sun and Zhang 2018),
surface temperature and water content (Abdollahi et al. 2018) and elevation data
(Adelabu et al. 2018) can be appropriately combined to establish forest fire pre-
diction and forecasting models. The fire danger forecast module of the European
Forest Fire Information System (EFFIS), is an active web-based system all year
around, generates daily maps of 1 to 10 days of forecasted fire danger level using
numerical weather predictions (http://effis.jrc.ec.europa.eu/).

Such models support risk assessment and mitigation, decision making and fire
management activities (Altan et al. 2013; Nyongesa and Vacik 2018).
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Early detection of forest fires is of vital importance as it saves critical times for
fire extinguishing activities. The human visualization system is not optimally suited
for fire detection. Smoke occlusion heavily limits flame visibility and low flames
can be difficult to see. Thermal infrared (TIR) and near-infrared (NIR) sensors
mitigate these affects and are widely used for fire detection (Burnett and Wing
2018). The satellite platforms offer wider field-of-view (FOV) at reasonable cost
and with flexible operational capabilities. The satellite sensors that are widely
used in fire detection are the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), EO-1 Advanced Land Imager (ALI), Advanced
Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging
Spectroradiometer (MODIS), Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
and Landsat 8 Operational Land Imager (OLI). All of them are owned by NASA
except the AVHRR by NOAA (Camaro et al. 2013).

MODIS offers several data products. Among them, the MODIS Thermal
Anomalies/Fire products (https://modis.gsfc.nasa.gov/data/dataprod/) are the most
used products to monitor and to detect hotspots and burned areas worldwide
(Justice et al. 2002a, b). The product includes fire occurrence (day/night), fire
location, the logical criteria used for the fire selection, detection confidence, Fire
Radiative Power and numerous other layers describing fire pixel attributes. The
product distinguishes between fire, no fire and no observation statuses.
The embedded fire detection strategy is based on absolute detection (when the fire
strength is sufficient to detect) and on detection relative to its background. An
improved fire hotspot detection algorithm was proposed by Giglio et al. (2003)
which uses a contextual algorithm exploiting the observations from several MODIS
channels. The Fire Information for Resource Management System (FIRMS) is a
web application that delivers global MODIS hotspots and fire locations in an easy
to use format (http://earthdata.nasa.gov/data/near-real-time-data/firms).

The GOFC/GOLD (Global Observations of Forest and Land Cover Dynamics) is
a project to provide a forum for international information exchange, observation
and data coordination, and a framework for establishing the necessary long-term
monitoring systems. The web site (http://gofc-fire.umd.edu/projects/index.php) lists
several active fire detection and monitoring systems.

Numerous fire detection algorithms have been developed using the MODIS fire
products (Giglio et al. 2016). The MODIS products are not only used for detecting
wildfires but also for tree cover loss caused by illegal clearing, interdict defor-
estation and other reasons (Wheeler et al. 2018).

The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi
National Polar–orbiting Partnership (Suomi-NPP) satellites, the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) on board the Meteosat Second Generation
(MSG) satellites, the Advanced Baseline Imager (ABI) on board the Geostationary
Operational Environmental Satellite-R Series (GOES-R) and the Visible and
Infra-Red Radiometer (VIRR) on board the Chinese FengYun-3C satellite are also
used for active fire detection (Schroeder et al. 2014; Filizzola 2016; Koltunov et al.
2016; Lin et al. 2018).
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Satellite sensors are feasible sources to be used for on-instant (or near real-time)
monitoring of forest fires. NASA’s Aqua satellite, carrying a MODIS sensor, cap-
tured the several parallel fires of California in a single scene on July 29, 2018. More
than 85,541 hectares were burned, and eight civilians died. The second-deadliest
wildfire in the 21st century, happened in Attica, Greece, in July 2018, was imaged
by GeoEye-1 satellite. Ninety-nine people were dead and thousands of homes were
destroyed. Planet, a Californian company, operates 130+ PlanetScope Dove, 13
SkySats and 5 RapidEye satellites to monitor the ground in near real-time, which
are also frequently used to monitor active forest fires (https://www.planet.com/).
USA Wildfires interactive map, which is an ESRI Storymap (https://storymaps.esri.
com/stories/usa-wildfires/), shows location, magnitude and status of active fires
raging across the United States. It is a good example of internet-based mapping
applications which is used for near real-time monitoring of forest fires.

Burn severity metrics are useful indicators to assess the post-fire conditions in
terms of forest damage and loss (Navarro et al. 2017). At least two images capturing
the pre- and post-fire status are required, which would be SAR (Addison and
Oommen 2018), VHR optical (Meng et al. 2017) or medium resolution multi-
spectral (Edwards et al. 2018; Fernandez-Garcia et al. 2018) images. If mapped
with appropriate cartographic techniques, the burn severity provides valuable
information to forest managers for their restoration efforts in terms of post-fire
recovery, regeneration and vegetation succession (Ryu et al. 2018; Vega et al. 2018;
Li et al. 2018). The geomatics (geo-spatial) platforms, sensors and techniques offer
a wide variety of solutions for rapid mapping of natural hazards including the
wildfires (Toschi et al. 2017; Toschi et al. 2018). The primary focus is on the most
recent satellites (Colson et al. 2018) and unmanned aerial vehicle (UAV) platforms
(GW website 2018). The Global Ecosystem Dynamics Investigation (GEDI), pro-
nounced like “Jedi” of Star Wars fame, will be the first space-borne laser instrument
to measure the height, density and structures of forests in high resolution and three
dimensions (https://gedi.umd.edu/). The expected launch to the International Space
Station (ISS) is in late 2018. Although NASA has other space-borne LiDAR
missions such as the ICESat (Ice, Cloud and land Elevation Satellite) and
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), the
GEDI will be the first to provide laser ranging of Earth’s forests.

After the forest fire lasts, the burned area should be estimated and mapped in
order to derive the canopy cover change (McCarley et al. 2017; Cabral et al. 2018;
Garcia-Lazaro et al. 2018; Krasovskii et al. 2018). This is predominantly accom-
plished with either multi-spectral remote sensing data or through ground-based field
sampling plots (McCarley et al. 2017). The main emphasis is given to the perfor-
mance of several parametric and non-parametric classifiers (Ramo et al. 2018). The
temporal dimension of post-fire changes is also attributed by analysing the data in
time series (Tian et al. 2018; Mayr et al. 2018). The output is typical 2D map
depicting the post-fire effects, since the standard burnt area products deal with area
computation, which are usually given in hectare units (Soto-Berelov et al. 2018).
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Even though the spatial dimension of forest fire changes is relatively less studied,
the burned volume would give much more valuable information than the burned
area. Volume computation requires more effort both in data and processing aspects
(Cailliez 1992). It is actively used in many scientific studies from static object
modelling to dynamic flow measurements (Schanz et al. 2018). Limited number of
studies has been performed for the forest (or deforestation) volume computation. In
a few number of studies, forest volume is conventionally predicted by interpolation
methods (Xu et al. 2018).

The FORSAT methodology follows an alternative approach, in which the pre-
and post-fire forest surfaces are modelled by generating DSMs derived from the
VHR satellite images. The fire related changes are analysed through the comparison
of pre- and post-fire DSMs. This operation is known as DSM of difference (DoD),
where cell-by-cell subtraction (or other kind of operations) is performed to calculate
the total volumes of change (Cucchiaro et al. 2018). If the image data of several
epochs are available, temporal-spatial analysis can also be done as time-series, thus
allowing 4D analysis and interpretation capabilities.

3 FORSAT Methodology

The FORSAT software allows processing the satellite imagery and extracting
meaningful and quantitative information about forests, such as area and volume
measurements of deforestation or regeneration of a forest. The software architecture
comprises four building blocks for (1) pre-processing, (2) geo-referencing, (3) DSM
generation and (4) 3D co-registration and comparison.

Each block is tightly coupled in a software suite framework. The FORSAT
software suite is not a monolithic system, that is, every core module works inde-
pendently but related to each other at the same time. It uses a graphical user
interface (GUI) which eases users to work with the software (Fig. 1).

The entire system is an effective combination of two main tasks. The first one is
dedicated to the geometric and radiometric processing of satellite imagery and
2D/3D information extraction, that is: radiometric pre-processing, image and

Fig. 1 The graphical user interface of the FORSAT software
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ground point measurement and sensor orientation, quasi-epipolar image derivation,
image matching, DSM extraction, ortho-rectification, and 3D vector measurement.

This unit supports most of the VHR optical imagery commonly used for civil
applications, for example IKONOS, GeoEye-1, WorldView-1/2, SPOT-5/6/7,
Pleiades-1A/1B, and it can be easily updated to similar images from future
missions.

The second task is dedicated to 3D surface comparison for change detection. It
allows the users to import DSMs and digital terrain models (DTMs), to align them
using an advanced 3D surface matching technique, and to calculate the 3D volume
differences.

The technical approach comprises a bunch of interconnected algorithms whose
details are given in Poli (2005), Zhang (2005) and Akca (2007) all of which are the
doctoral theses performed at the photogrammetry group of ETH Zurich. Later on,
these algorithms were commercialized by 4DiXplorer AG (www.4dixplorer.com),
an ETH spin-off company located in Zurich. The FORSAT software is a special-
ization of these base algorithms to forestry applications, and distributed by
4DiXplorer AG.

3.1 Pre-processing

The VHR satellite images are provided together with their metadata by the vendors.
Before applying the algorithms for the geo-referencing of the images, some oper-
ations are required in order to prepare the input data. The pre-processing includes
both the analysis of the metadata files for the extraction of the required information
and the radiometric improvement of the images in order to facilitate the point
measurements (Poli 2007).

The performance of the image matching and feature extraction procedures
depends on the quality and quantity of information carried out by the images.
Compared to the traditional scanned 8-bit/pixel images, digital imagery from linear
array sensors has better radiometric performance e.g. higher dynamic range and
signal-to-noise ratio. Most of the linear array sensors have the ability to provide
high quality digital images. However, some radiometric problems still have to be
considered: poor image contrast, the image blur problems mainly caused by CCD
line jitter, kappa jitter and motion blur and deficiencies of the lens system, image
noise, and radiometric problems caused by the variations in the sensor view angle,
the sun angle, shadowing, and the seasonal and the atmospheric conditions. These
problems are usually beyond the control of the users. However, they have to be
restored as much as possible. In order to reduce the effects of such radiometric
problems and optimise the images for subsequent feature extraction and image
matching step, the image pre-processing methods have to be employed (Zhang
2005). While the gamma correction, contrast enhancement, histogram equalisation
are trivial applications and can be found in many standard image processing soft-
ware, FORSAT uses the Wallis filter, because it is a specific and powerful
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algorithm (Wallis 1976). The filter forces the mean and standard deviation of an
image to given target values.

At present, many of the modern matching algorithms are based on the image
pyramids (Fig. 2). An image pyramid is a multi-resolution representation of the
original image. It is used to speed-up the image matching computation in a
coarse-to-fine hierarchical approach while at same time keeping the finest spatial
resolution of the final DSM output.

Fig. 2 An image pyramid starting from the original resolution level 0 through the levels 1, 2 and 3
by reducing the image size by factor 3 at each consecutive level
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With coarse-to-fine hierarchical strategy based on image pyramid representation,
the matches obtained at a coarse resolution are used to guide and limit the search
space for the matching of finer-resolution features. The usual way is to start
matching at a low resolution pyramid level, where the influence of image noise is
reduced and coarse approximate values are sufficient to stay within the pull-in range
of the matching procedure. In addition, the regions of interest for correspondence
analysis in levels of higher resolution can be found in the low resolution images at
low cost because irrelevant details are no longer available there. The computations
are usually performed successively on each level of the hierarchy using the results
of the higher level as approximate information (Ackermann and Hahn 1991; Zhang
and Gruen 2006). The FORSAT software generates the image pyramids at the end
of the pre-processing step, starting from the original resolution images. Each
pyramid level is generated by multiplying a generating kernel and reduces the
resolution by factor 3.

3.2 Geo-referencing

The FORSAT software uses the rational function model (RFM), a well-known
non-rigorous (generalised) orientation method based on the rational polynomials
functions. A RFM is the ratio of two polynomials derived from the rigorous sensor
model and the corresponding terrain information, which does not reveal the sensor
parameters explicitly. In most cases, the VHR satellite images are supplied with
only rational polynomials coefficients (RPCs) instead of rigorous sensor model
parameters.

The RFM is computed based on a rigorous sensor model (Fig. 3). With the given
parameters of the rigorous model and by projecting evenly distributed image points
into the object space, multiple-layer 3D object points can be computed and used as
virtual (fictitious) control points. The control points are created based on the full
extent of the image and the range of elevation variation in the object space. The
entire range of elevation variation is sliced into several layers. Then, the RPCs are
calculated by a least squares adjustment with these virtual control points (Tao and
Hu 2001).

Grodecki and Dial (2003) proposed a block adjustment method for the VHR
satellite imagery where the geo-referencing accuracy of the RFM is improved by
use of a few numbers of control points. This RPC block adjustment method was
implemented in the FORSAT software. It can run for stereo, triplet and block image
configurations.
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3.3 DSM Generation

The automated DSM generation was performed using a modified version of the
multiple primitive multi-image matching (MPIM) method introduced by Zhang and
Gruen (2004), Zhang (2005) and Zhang and Gruen (2006). In order to achieve
successful and reliable results, the method matches a dense pattern of features with
an appropriate matching strategy, making use of all available and explicit knowl-
edge, concerning sensor model, network structure, image content and geometrical
constraints such as the epipolar geometry constraint. The approach combines
area-based matching (ABM) and feature-based matching (FBM), matching
parameter self-tuning, generation of more redundant matches and a coarse-to-fine
hierarchical matching strategy (Zhang et al. 2006; Baltsavias et al. 2007). The
workflow is given schematically in Fig. 4.

After the pre-processing of the original images and production of the image
pyramids, the area based and the feature based matching methods are run in par-
allel. Starting from the low-density features on the images with the low resolution,
the matching procedure progressively approaches finally on the original resolution
images. Since all the matching procedures are based on the concept of multi-image
matching (two-fold and three-fold images) guided from the object space, any
number of images could be processed simultaneously. The triangulated irregular
network (TIN) is reconstructed from the matched features on each level of the

Fig. 3 The RPC computation
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pyramid using the Delaunay triangulation method, which in turn is used in the
subsequent pyramid level for the approximations and adaptively computation of
the matching parameters. Finally, the least squares matching methods are used to
achieve more precise matches for all the features and to identify some false
matches.

The entire system consists of three mutually connected sub-systems: the image
pre-processing module, the MPIM module and the refined matching module. The
image pre-processing module is used to reduce the effects of the radiometric

Fig. 4 Automated DSM generation in the FORSAT software
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problems and optimise the images for subsequent feature extraction and image
matching procedure. A combined matching process (point matching, edge matching
and relational matching processes) goes through all the image pyramid levels in the
MPIM module and generates good enough approximations for the refined matching
module. In the final refined matching module, the least squares matching methods
are performed only on the original resolution images to achieve sub-pixel accuracy
for all matched features obtained in the MPIM module (Zhang 2005).

3.4 3D Co-registration and Comparison

The co-registration is crucially needed wherever spatially related data sets,
described as surfaces, have to be aligned to each other for comparison. Examples
can be found in medicine, computer graphics, animation, cartography, virtual
reality, industrial inspection and quality control, change detection, spatial data
fusion, cultural heritage, photogrammetry, etc. Since DSMs represent the object
surface, the problem can be defined as a surface co-registration problem. There have
been some studies on the co-registration of DSMs for control information and for
change detection tasks. This work is known as the digital elevation model
(DEM) matching (Ebner et al. 1988; Rosenholm and Torlegard 1988; Mitchell and
Chadwick 1999). This method basically estimates the 3D similarity transformation
parameters between two DEM patches, minimising the sum of the squares of the
elevation differences (1D along the z-axes). The 1D elevation differences may not
truly represent the surface-to-surface distance where terrain is complex with steep
changes and undulations.

For quality evaluation of DSMs, often a reference DSM is interpolated in the
DSM to be checked. This approach is suboptimal (Gruen et al. 2004; Akca et al.
2016), since:

(1) at surface discontinuities surface modelling errors may lead to large height
differences although the measurements are correct (Fig. 5a) and

(2) if the reference frames of the two DSMs differ (e.g. shifts and tilts), then again
large differences occur, especially at discontinuities although the heights may
be correct (Fig. 5c).

These shortcomings can be overcome by employing the approach where the
shortest 3D (Euclidean) distance between each reference point and the produced
DSM is used (Gruen and Akca 2005; Akca 2010; Akca et al. 2010). See Fig. 5b and
Fig. 5d. Although the co-registration of surfaces is a very actively working area in
many disciplines, we notice that a contribution that responds favourably to the
following aspects is needed:
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(1) co-registration capability with higher order spatial transformation models,
(2) co-registration and comparison of full 3D surfaces (as opposed to 2.5D),
(3) a rigorous mathematical formulation for high accuracy demands,
(4) a flexible model for further algorithmic extensions,
(5) mechanisms and statistical tools for internal quality control, and
(6) capability of matching of data sets in different quality and resolution.

As a consequence, a fully satisfying general solution was implemented in the
FORSAT software. We opted for the least squares 3D surface matching (LS3D)
method (Gruen and Akca 2005; Akca 2007, 2010). The LS3D method is a rigorous
algorithm for the matching of overlapping 3D surfaces and/or point clouds. It
estimates the transformation parameters of one or more fully 3D surfaces with
respect to a template surface, using the generalised Gauss–Markov model, min-
imising the sum of the squares of the Euclidean distances between the surfaces. This
formulation gives the opportunity to match arbitrarily oriented 3D surfaces, without
using explicit tie points. It is a powerful method whose accuracy and precision
potential is directly dependent on the quality of the input data. Details of the
procedure can be found in Akca and Gruen (2005; 2007). Several applications
ranging from 3D modelling (Akca et al. 2006, 2007; Akca 2012) to geomorphology
(Akca and Seybold 2016) showed the benefits of the method. The 3D
co-registration and comparison module of the FORSAT software is a specialised
implementation of the LS3D method.

Fig. 5 The sub-optimality of 1D height differences a and c with respect to the 3D spatial distances
b and d in case of surface modelling errors and reference frame differences (translation and
rotation), respectively
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3.5 Change Detection

Pre- and post-fire DSMs are matched with the co-registration module of the
FORSAT software. Once the DSM pair is aligned and overlaid, the two surfaces
form many interconnected or separated 3D manifolds (shapes). At each grid cell
location, the surface elements are compared and the grid cell is assigned to any of
those three states: decrease, no change and increase. Since the grid cell dimensions
and surface-to-surface distances are known, the area and volume values are com-
puted by summation the information of all grid cells.

Any spatial deviation larger than ±3 m between the DSMs is regarded as a
“change” (fire induced decrease or vegetation growth based increase). This value is
the mean a priori accuracy of the used DSMs according to our internal tests with
VHR satellite images. The mean DSM generation accuracy of the FORSAT system
is about 2–3 times of the ground sampling distance (GSD) of the used imagery. The
spatial deviations less than ±3 m are labelled as “no change” class.

The gross errors due to image matching, triangulation and reconstruction
problems produce abrupt changes on the DSM surface. Any spatial deviation larger
than ±20 m are regarded as the gross error, excluded from the computation, and
labelled as “no data”. Although they are excluded in the computations, they are kept
in the visualizations.

The selection of the threshold numbers as less than or greater than ±3 and
±20 m will accordingly change the ratio of Type-I and II errors. They can be tuned
depending on the data type.

3.6 Error Assessment

Three classes “decrease in height”, “no change” and “increase in height” are
identified in the change detection step. In each test site, externally derived ground
truth in the form of check points or polygons are used to perform the error
assessment.

A sample point (or polygon) is classified as a true positive (TP), if the detection
result corresponds to the reference data. A false positive (FP) error is a false
detection where the detection result does not conform to the reference data (Shufelt
1999; McKeown et al. 2000). It is also known as Type-I error or commission error.
A false negative (FN) error is a missed detection where an actual class in the
reference data is omitted in the detection. It is also known as Type-II error or
omission error.

Three commonly used metrics, the correctness, completeness and quality
(Heipke et al. 1997; Rutzinger et al. 2009), are used for the evaluation of the results.
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Correctness is the percentage of truly detected classes in the sample points, also
referred to as users’ accuracy (Foody 2002). It is relevant to the FP errors.

Correctnessi ¼ ðTPÞi= ðTPÞi þ
X

ðFPÞj
h i

ð1Þ

Completeness is the percentage of truly detected classes in the reference points,
also referred to producers’ accuracy (Foody 2002). It is relevant to the FN errors.

Completenessi ¼ ðTPÞi= ðTPÞi þ
X

ðFNÞj
h i

ð2Þ

Quality is the overall accuracy which takes into account both the correctness and
completeness, also referred to percentage correct (Foody 2002).

Quality ¼
X

ðTPÞi=
X

ðTPÞi þ
X

ðFPÞij þ
X

ðFNÞij
h i

ð3Þ

The correctness and completeness metrics are computed for each of those three
classes, individually. Quality is a single metric for the entire test site, given in the
cells located at lower right corners of Tables 1 and 2.

Table 1 Confusion matrix of the Cyprus test site

Ref. Ref. Ref.

Decrease No change Increase Row
P

Correct. (%)

Det. Decrease 40 44 1 85 47.1

Det. No change 14 83 3 100 83.0

Det. Increase 1 5 9 15 60.0

Column
P

55 132 13 200

Complet. 72.7% 62.9% 69.2% 66.0

Ref. Reference data, Det. Detection data, Row
P

Row total, Column
P

Column total

Table 2 Confusion matrix of the Austria test site

Ref. Ref. Ref.

Decrease No change Increase Row
P

Correct. (%)

Det. Decrease 19 1 0 20 95.0

Det. No change 5 92 3 100 92.0

Det. Increase 0 57 23 80 28.8

Column
P

24 150 26 200

Complet. 79.2% 61.3% 88.5% 67.0

Ref. Reference data, Det. Detection data, Row
P

Row total, Column
P

Column total
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4 Experimental Results

4.1 Cyprus Test Site

The climate of Cyprus is characterised by mild and rain-laden winters as well as dry
and hot summers. Due to its climate conditions it is predestined for the breakout of
forest fires. The high risk for forest ecosystems is also boosted through human
interventions. The forest fire of Saittas, raged in 2007, was defined as a test site. The
reason for this decision was the disastrous impact of the fire to the local vegetation
which is still visible despite the long period of years between the event and image
acquisition. The area of interest (AOI) covers an area of about 45 km2 and includes
the city of Pelentri in the Limassol district. There was an Ikonos stereo pair from
October 2001 available which was used for the calculation of the pre-fire DSM. For
the generation of the post-fire DSM a Pléiades stereo pair acquired in July 2014 was
used.

The historic DSM (Fig. 6a) and the recent DSM (Fig. 6b) were generated using
the FORSAT software. The both DSMs have a resolution of 2.0 m.

The change analysis was performed with “3D Comparison and Analysis”
module of the FORSAT software. The effect of the forest fire of year 2007 can be
seen in the west part of the change map (see the largest blue circle in Fig. 7 and
enlarged 3D view in Fig. 8a). Furthermore, there are smaller burned areas near
Pelentri in the north-east of the AOI (see the blue circle in the north-east of Fig. 7
and enlarged view in Fig. 8b). The decreased forest areas in the south-east of the
AOI are man-made changes (Fig. 8c).

Figure 9 visualises the percentage of fire-affected vegetation cover in the AOI. It
can be seen that conifer forest with nearly 70% is the most affected vegetation by
the forest fire in 2007, followed by bushes and shrubs with 9.5% and tree culti-
vations with 9.2%.

Fig. 6 a Ikonos DSM of October 2001, b Pléiades DSM of July 2014
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Figure 10 shows that more than half (54.6%) of the broadleaved forest area,
47.5% of conifer forest and more than a third (36.0%) of the undefined (forest) area
were affected by the decrease in height. We noticed that the forest has still not
recovered from the fire in 2007.

Fig. 7 Change map between pre-fire DSM and post-fire DSM in Cyprus

Fig. 8 Zoom into Fig. 7 a 3D view of the largest circle region in the centre, b the north-east circle
region, c the south-east small circle region
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Figure 11 visualizes the change in volume in fire-affected vegetation cover based
on comparison of the DSMs of 2001 and 2014. It illustrates that there is a large
decrease (approx. 13 million m3) of conifer forest. However, this class has also the
highest volume increase (365,892 m3), but it has to be noted that conifer forest
cover almost 70% of the whole fire-affected area. Other land cover classes with a
volume decrease of nearly 200,000 m3 and more are undefined forest, broadleaved
forest, tree cultivations as well as bush and shrubs (maqui). Besides conifer forest
only tree cultivations have a volume increase of more than 100,000 m3. An
interesting fact is that the land cover class annual cultivations decreases the area,
but increases the volume in total.

Fig. 9 Percentage of fire-affected vegetation cover in the area of interest

Fig. 10 Change in area (percentage) of fire effected forest vegetation
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In order to perform the error assessment, 85, 100 and 15 samples were randomly
selected in the detected “decrease in height”, “no change” and “increase in height”
classes, respectively. Their actual states were manually investigated on the available
aerial and satellite images. The results are presented in a confusion matrix
(Table 1). The overall accuracy is 66.0%. There is a tendency towards overesti-
mation of both of the change classes, whilst the “no change” class is underesti-
mated. The “no change” class interferes with the both change classes. This is
because of the image matching errors and modelling problems especially at the
abrupt surface discontinuities, shadow and cloud coverages. This fact is especially
significant in the “decrease in height” class in which 44 FPs were detected mis-
takenly, although they belong to the “no change” class in reality.

Fig. 11 Change in volume (m3) of fire effected forest vegetation

Fig. 12 Forest fire near Absam, Tyrol, Austria
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4.2 Austria Test Site

Monitoring of forest areas in terms of quantifying changes over time is a crucial
topic in Austria. Strong winds cannot only cause direct damages, but also lead to
threats concerning the break out and spreading of forest fires. Fires are great dangers
for forests and subsequently for humans as the forests have a protection function for
inhabited areas regarding other natural hazards like avalanches, landslides or rock
falls. Due to the forest fire event near Absam in Tyrol (Austria), which started on
20-th of March 2014 and raged about two days, the corresponding burned area was
selected as a test site (Fig. 12).

The AOI covers about 62 km2 and includes the burned area from the afore-
mentioned forest fire as well as the eastern suburbs of Innsbruck. Hence, the test site
includes a variety of landscapes like mountains, dense urbanised areas surrounded
by intensive agriculture as well as rural areas.

The pre-fire data, which dates back to 2006/2007, is a 1.0 m resolution DSM
derived from an airborne LiDAR flight (Fig. 13a). A set of Pléiades triplet images
was acquired in June 2014 and used to represent the post-fire situation. The Pléiades
triplet was processed using the FORSAT software and a 1.0 m resampled DSM was
generated (Fig. 13b).

The optical instrument of Pléiades has 70 cm resolution and offers three-fold
images of the same scene from the along track trajectory of the platform. The three
rays of the same object point increase the system redundancy, and so also the
reliability. The LiDAR DSM and Pléiades DSM were co-registered and compared
using the LS3D algorithm of the FORSAT software. The result of the 3D change
analysis is given in Fig. 14.

Fig. 13 a Historical LiDAR DSM of 2006/2007, b recent Pléiades DSM of 2014
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The occasional clear-cuts and storm damages in the north and the vegetation
growth in the south are dominating patterns. The enlarged view of the forest fire,
delineated with the blue rectangle, is given in Fig. 15a. The dark green region in the
centre of the false colour composite image (Fig. 15b) is the fire affected area, which
is shown in orange colour in its change DSM counterpart (Fig. 15a). The fire
burned area was dominated by shrubs (proportionally shorter than trees) according
to the reports of the Forest Department. This is the reason why the burned areas are
not as dominant as the deforestation areas due to clear-cuts or storms such as the red
plots in the upper left and lower right parts of Fig. 15a.

There are three classes in the test area: timber forest, shrubs and clear-cuts
(Fig. 16). Timber forest is the dominating type with 81.3% coverage.

The forest map showing the boundaries of these three classes is obtained in
vector format and overlaid with the change results given in Fig. 14. Thus, areal
extends of change of each individual class are computed and given as percentage in
Fig. 17.

Fig. 14 The 3D Change
analysis. Red colour
deforestation and green for
growth of the vegetation
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In spite of the forest fire, changes of shrubs are minor, and 99.1% area of the
shrubs coverage remained unchanged. 17.5% area of the timber forest class
increases in height, which is clearly visible as growth of the vegetation in the
southern part of the test area (below green areas in Fig. 14).

The results of the volumetric comparison (Fig. 18) show that the trend is in the
same direction with the area comparison, but the magnitude is overwhelmingly
nonlinear. The timber forest class gained 17.7 million m3 volume of stock whereas
it lost 7.2 million m3 due to deforestation. A detailed analysis of the burnt area,
visualised in Fig. 15, shows a loss of volume caused by the fire in March 2014 of
41,800 m3 shrubs and 40,100 m3 timber forest.

20, 100 and 80 sample points to be used in the error assessment were randomly
selected in the detected “decrease in height”, “no change” and “increase in height”

Fig. 15 a Enlarged view of the fire area which is shown as a blue rectangle in Fig. 14, b Pléiades
(in June 2014) false colour composite of the same extend

Fig. 16 Percentage of forest
map classes in the area of
interest
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classes, respectively. Their actual states were manually investigated on the available
historic orthophotos and actual satellite images. The results are presented in
Table 2.

“Decrease in height” class is successfully detected in terms of both the cor-
rectness and completeness metrics. “Increase in height” class has the worst FP rate
as 100%–28.8% = 71.2%, in contrast to the previous Cyprus test site. “Decrease”
and “increase” in height classes do not significantly interfere to each other. “No
change” class has the largest FN rate as 38.7%. The discrimination problems
between the “no change” and “increase in height” classes degrade the overall
accuracy, which is 67.0%.

Fig. 17 Change in area (percentage) of each vegetation type

Fig. 18 Change in volume (m3) of each vegetation type
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5 Conclusions

Forest administrations give special attention to forest fires where post-disaster loss
can rarely be gauged in a quick and economic way unless an appropriate technology
is adopted. Determination of planimetric and volumetric changes between pre- and
post-fire stages is in high demand. The FORSAT software was developed to meet
the relevant demands. It is capable of providing spatial information for rapid
monitoring of forest areas. The basic input data is the VHR satellite imagery. The
software consists of mutually linked modules which are pre-processing,
geo-referencing, DSM generation, and 3D comparison and analysis.

The pilot application studies demonstrate the capability of the FORSAT software
especially for change analysis of the forest burnt areas. Special attention was paid to
use combinations of different input data like stereo and triplet image data from
different satellites as well as LIDAR point clouds. The results of the applications
show the high potential of optical images from VHR satellite sensors for DSM
generation on forest covers and that the FORSAT software is a powerful tool to
extract value-added products related to forest and beyond. It provides an innovative
approach by detecting changes from DEMs of different dates.

The results of FORSAT provide single source, flexible forest information
solutions with a very competitive price versus quality ratio, allowing for new
market entry in the forest sector. It can be used for various service applications
related to forest as well as other topics.

References

Abdollahi M, Islam T, Gupta A, Hassan QK (2018) An advanced forest fire danger forecasting
system: integration of remote sensing and historical sources of ignition data. Remote Sens
10:923. https://doi.org/10.3390/rs10060923

Ackermann F, Hahn M (1991) Image pyramids for digital photogrammetry. In: Ebner H,
Fritsch D, Heipke C (eds) Digital photogrammetric systems. Wichmann, Karlsruhe, pp 43–58

Addison P, Oommen T (2018) Utilizing satellite radar remote sensing for burn severity estimation.
Int J Appl Earth Obs Geoinf 73:292–299

Adelabu SA, Adepoju KA, Mofokeng OD (2018) Estimation of fire potential index in
mountainous protected region using remote sensing. Geocarto International. https://doi.org/
10.1080/10106049.2018.1499818

Akca D, Gruen A (2005) Recent advances in least squares 3D surface matching. In: Gruen A,
Kahmen H (eds) Proceedings of the optical 3-D measurement techniques VII, Vienna, Austria,
3–5 October 2005, vol. II, pp 197–206

Akca D, Gruen A, Alkis Z, Demir N, Breuckmann B, Erduyan I, Nadir E (2006) 3D modeling of
the Weary Herakles statue with a coded structured light system. Int Arch Photogramm Remote
Sens Spat Inf Sci 36(5):14–19

Akca D (2007) Least Squares 3D surface matching. Ph.D. thesis, Institute of Geodesy and
Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr. 92, p 78. https://doi.org/10.3929/
ethz-a-005461765

Akca D, Gruen A (2007) Generalized Least Squares multiple 3D surface matching. Int Archives
Photogramm Remote Sens Spat Inf Sci 36(3/W52):1–7

Pre- and Post-Fire Comparison of Forest Areas in 3D 289

http://dx.doi.org/10.3390/rs10060923
http://dx.doi.org/10.1080/10106049.2018.1499818
http://dx.doi.org/10.1080/10106049.2018.1499818
http://dx.doi.org/10.3929/ethz-a-005461765
http://dx.doi.org/10.3929/ethz-a-005461765


Akca D, Remondino F, Novàk D, Hanusch T, Schrotter G, Gruen A (2007) Performance
evaluation of a coded structured light system for cultural heritage applications. Proc. of
SPIE-IS&T Electronic Imaging, Videometrics IX, San Jose, California, January 29–30. SPIE
6491:64910V-1–12

Akca D (2010) Co-registration of surfaces by 3D Least Squares matching. Photogramm Eng
Remote Sens 76(3):307–318

Akca D, Freeman M, Sargent I, Gruen A (2010) Quality assessment of 3D building data.
Photogram Rec 25(132):339–355

Akca D (2012) 3D modeling of cultural heritage objects with a structured light system. Mediterr
Archaeol Archaeom 12(1):139–152

Akca D, Seybold HJ (2016) Monitoring of a laboratory-scale inland-delta formation using a
structured-light system. Photogram Rec 31(154):121–142

Akca D, Stylianidis E, Smagas K, Hofer M, Poli D, Gruen A, Martin VS, Altan O, Walli A,
Jimeno E, Garcia A (2016) Volumetric forest change detection through VHR satellite imagery.
Int Archives Photogramm Remote Sens Spat Inf Sci 41(B8):1213–1220

Almeida-Filho R, Rosenqvist A, Shimabukuro YE, dos Santos JR (2005) Evaluation and
perspectives of using multitemporal L-band SAR data to monitor deforestation in the Brazilian
Amazonia. IEEE Geosci Remote Sens Lett 2(4):409–412

Almeida-Filho R, Rosenqvist A, Shimabukuro YE, Silva-Gomez R (2007) Detection deforestation
with multitemporal L-band SAR imagery: a case study in western Brazilian Amazonia. Int J
Remote Sens 28(6):1383–1390

Almeida-Filho R, Shimabukuro YE, Rosenqvist A, Sanchez GA (2009) Using dual-polarized
ALOS PALSAR data for detecting new fronts of deforestation in the Brazilian Amazonia. Int J
Remote Sens 30(14):3735–3743

Altan O, Backhaus R, Boccardo P, van Manen N, Tonolo FG, Trinder J, Zlatanova S (2013). The
value of geoinformation for disaster and risk management (VALID), Joint Board of Geospatial
Information Society (JB GIS), Copenhagen, ISBN 97887-90907-88-4

Alves DS (2002) Space-time dynamics of deforestation in Brazilian Amazonia. Int J Remote Sens
23(14):2903–2908

Anderson LO, Shimabukuro YE, Defries RS, Morton D (2005) Assessment of deforestation in
near real time over the Brazilian Amazon using multitemporal fraction images derived from
Terra MODIS. IEEE Geosci Remote Sens Lett 2(3):315–318

Baillarin F, Souza C, Gonzales G (2008) Use of Formosat-2 satellite imagery to detect near real
time deforestation in Amazonia. IEEE International Geoscience & Remote Sensing
Symposium (IGARSS’2008). https://doi.org/10.1109/IGARSS.2008.4779481

Baltsavias E, Kocaman S, Akca D, Wolff K (2007) Geometric and radiometric investigations of
Cartosat-1 Data. ISPRS Workshop on high resolution earth imaging for geospatial information,
Hannover, Germany, 29 May–1 June 2007

Bodart C, Eva H, Beuchle R et al (2011) Pre-processing of a sample of multi-scene and multi-date
Landsat imagery used to monitor forest cover changes over the tropics. ISPRS J Photogramm
Remote Sens 66:555–563

Burnett JD, Wing MG (2018) A low-cost near-infrared digital camera for fire detection and
monitoring. Int J Remote Sens 39(3):741–753

Cabral AIR, Silva S, Silva PC, Vanneschi L, Vasconcelos MJ (2018) Burned are estimations
derived from Landsat ETM+ and OLI data: comparing Genetic Programming with Maximum
Likelihood and classification and regression trees. ISPRS J Photogramm Remote Sens 142:94–
105

Cailliez F (1992) Forest volume estimation and yield prediction. FAO For Paper 22(1):98
Camaro W, Steffenino S, Vigna R (2013) Fire risk mapping and fire detection and monitoring. In:

The value of Geoinformation for disaster and risk management (VALID), joint board of
geospatial information society (JB GIS), Copenhagen, ISBN 97887-90907-88-4

Colson D, Petropoulos GP, Ferentinos KP (2018) Exploring the potential of Sentinels-1 & 2 of the
Copernicus Mission in support of rapid and cost-effective wildfire assessment. Int J Appl Earth
Obs Geoinf 73:262–276

290 D. Akca et al.

http://dx.doi.org/10.1109/IGARSS.2008.4779481


Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F (2018)
Monitoring topographic changes through 4D-structure-from-motion photogrammetry:
Application to a debris-flow channel. Environ Earth Sci 77:632. https://doi.org/10.1007/
s12665-018-7817-4

Di Maio Mantovani AC, Setzer AW (1997) Deforestation detection in the Amazon with an
AVHRR-based system. Int J Remote Sens 18(2):273–286

Ebner H, Strunz G (1988) Combined point determination using digital terrain models as control
information. Int Archives Photogramm Remote Sens 27(B11/3):578–587

Edwards AC, Russell-Smith J, Maier SW (2018) A comparison and validation of satellite-derived
fire severity mapping techniques in fire prone north Australian savannas: extreme fires and tree
stem mortality. Remote Sens Environ 206:287–299

Eva H, Carboni S et al (2010) Monitoring forest areas from continental to territorial levels using a
sample of medium spatial resolution satellite imagery. ISPRS J Photogramm Remote Sens
65:191–197

Fernandez-Garcia V, Santamarta M, Fernandez-Manso A, Quintano C, Marcos E, Calvo L (2018)
Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat
imagery. Remote Sens Environ 206:205–217

Filizzola C, Corrado R, Marchese F, Mazzeo G, Paciello R, Pergola N, Tramutoli V (2016)
RST-FIRES, an exportable algorithm for early-fire detection and monitoring: description,
implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens
Environ 186:196–216

Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ
80:185–201

Garcia-Lazaro JR, Moreno-Ruiz JA, Riano D, Arbelo M (2018) Estimation of burned area in the
northeastern Siberian Boreal Forests from a long-term data record (LTDR) 1982-2015 time
series. Remote Sens 10:940. https://doi.org/10.3390/rs10060940

Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection
algorithm for MODIS. Remote Sens Environ 87:273–282

Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection
algorithms and fire products. Remote Sens Environ 178:31–41

Grodecki J, Dial G (2003) Block Adjustment of High-Resolution Satellite Images Described by
Rational Polynomials. Photogramm Eng Remote Sens 69(1):59–68

Gruen A, Poli D, Zhang L (2004) SPOT-5/HRS stereo images orientation and automated DSM
generation. Int Archives Photogramm Remote Sens Spat Inf Sci 35(1):421–432

Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm
Remote Sens 59(3):151–174

GW website (2018) Insitu ScanEagle UAS helps suppress wildfires. https://www.geomatics-world.
co.uk/content/news/insitu-scaneagle-uas-helps-suppress-wildfires. Accessed 09 Oct 2018

Haboudane D, Bahri EM (2008) Deforestation detection and monitoring in cedar forests of the
Moroccan Middle-Atlas Mountains. IEEE International Geoscience & Remote Sensing
Symposium (IGARSS’2007). https://doi.org/10.1109/IGARSS.2007.4423809

Heipke C, Mayer H, Wiedemann C, Jamet O (1997) Evaluation of automatic road extraction. Int
Archives Photogramm Remote Sens 32(3–2W3):47–56

Ichii K, Maruyama M, Yamaguchi Y (2003) Multi-temporal analysis of deforestation in Rondonia
state in Brazil using Landsat MSS, ETM+ and NOAA AVHRR imagery and its relationship to
changes in the local hydrological environment. Int J Remote Sens 24(22):4467–4479

Isoguchi O, Shimada M, Uryu Y (2009) A preliminary study on deforestation monitoring in
Sumatra island by PALSAR. IEEE International Geoscience & Remote Sensing Symposium
(IGARSS’2009). https://doi.org/10.1109/IGARSS.2009.5417928

Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP Morisette
JT (2002a) An overview of MODIS Land data processing and product status. Remote Sensing
of Environment 83:3–15

Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S,
Petitcolin F, Kaufman Y (2002b) The MODIS fire products. Remote Sens Environ 83:244–262

Pre- and Post-Fire Comparison of Forest Areas in 3D 291

http://dx.doi.org/10.1007/s12665-018-7817-4
http://dx.doi.org/10.1007/s12665-018-7817-4
http://dx.doi.org/10.3390/rs10060940
https://www.geomatics-world.co.uk/content/news/insitu-scaneagle-uas-helps-suppress-wildfires
https://www.geomatics-world.co.uk/content/news/insitu-scaneagle-uas-helps-suppress-wildfires
http://dx.doi.org/10.1109/IGARSS.2007.4423809
http://dx.doi.org/10.1109/IGARSS.2009.5417928


Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral
remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens
65:581–590

Krasovskii A, Khabarov N, Pirker J, Kraxner F, Yowargana P, Schepaschenko D, Obersteiner M
(2018) Forests 9:437. https://doi.org/10.3390/f9070437

Koltunov A, Ustin SL, Quayle B, Schwind B, Ambrosia VG, Li W (2016) The development and
first validation of the GOES Early Fire Detection (GOES-EFD) algorithm. Remote Sens
Environ 184:436–453

Lee H (2008) Mapping deforestation and age of evergreen trees by applying a binary coding
method to time-series Landsat November images. IEEE Trans Geosci Remote Sens 46
(11):3926–3936

Li X, Zhang H, Yang G, Ding Y, Zhao J (2018) Post-fire vegetation succession and surface energy
fluxes derived from remote sensing. Remote Sens 10:1000. https://doi.org/10.3390/rs10071000

Lin Z, Chen F, Niu Z, Li B, Yu B, Jia H, Zhang M (2018) An active fire detection algorithm based
on multi-temporal FengYun-3C VIRR data. Remote Sens Environ 211:376–387

Mancini LD, Elia M, Barbati A, Salvati L, Corona P, Lafortezza R, Sanesi G (2018) Are wildfires
knocking on the built-up areas door? Forests 9:234. https://doi.org/10.3390/f9050234

Mayr MJ, Vanselow KA, Samimi C (2018) Fire regimes at the arid fringe: A 16-year remote
sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial
predictive models. Ecol Ind 91:324–337

McCarley TR, Kolden CA, Vaillant NM, Hudak AT, Smith AMS, Wing BM, Kellogg BS,
Kreitler J (2017) Multi-temporal LiDAR and Landsat quantification of fire-induced changes to
forest structure. Remote Sens Environ 191:419–432

McKeown DM, Bulwinkle T, Cochran S, Harvey W, McGlone C, Shufelt JA (2000) Performance
evaluation for automatic feature extraction. Int Archives Photogramm Remote Sens 33
(B2):379–394

Meng R, Wu J, Schwager KL, Zhao F, Dennison PE, Cook BD, Brewster K, Green TM, Serbin SP
(2017) Using high spatial resolution satellite imagery to map forest burn severity across spatial
scales in a Pine Barrens ecosystem. Remote Sens Environ 191:95–109

Millington AC, Velez-Liendo XM, Bradley AV (2003) Scale dependence in multitemporal
mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in
landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote
Sens 57:289–299

Mitchell HL, Chadwick RG (1999) Digital photogrammetric concepts applied to surface
deformation studies. Geomatica 53(4):405–414

Mondal P, Southworth J (2010) Protection vs. commercial management: spatial and temporal
analysis of land cover changes in the tropical forests of Central India. For Ecol Manage
259:1009–1017

Mora B, Wulder MA, White JC, Hobart G (2013) Modeling stand height, volume, and biomass
from very high spatial resolution satellite imagery and samples of airborne LiDAR. Remote
Sens 5:2308–2326

Navarro G, Caballero I, Silva G, Parra PC, Vazquez A, Caldeira R (2017) Evaluation of forest fire
on Madeira Island using Sentinel-2A MSI imagery. Int J Appl Earth Observ Geoinf 58:97–106

Nyongesa KW, Vacik H (2018) Fire management in Mount Kenya: a case study of Gathiuru forest
station. Forests 9:481. https://doi.org/10.3390/f9080481

Pahari K, Murai S (1999) Modelling for prediction of global deforestation based on the growth of
human population. ISPRS J Photogramm Remote Sens 54:317–324

Pasquarella VJ, Holden CE, Kaufman L, Woodcock CE (2016) From imagery to ecology:
leveraging time series of all available Landsat observations to map and monitor ecosystem state
& dynamics. Remote Sens Ecol Conserv 2(3):152–170. https://doi.org/10.1002/rse2.24

Poli D (2005) Modelling of Spaceborne Linear Array Sensors. Ph.D. thesis, Institute of Geodesy
and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr. 85, p 217

Poli D (2007) A Rigorous Model for Spaceborne Linear Array Sensors. Photogramm Eng Remote
Sens 73(2):187–196

292 D. Akca et al.

http://dx.doi.org/10.3390/f9070437
http://dx.doi.org/10.3390/rs10071000
http://dx.doi.org/10.3390/f9050234
http://dx.doi.org/10.3390/f9080481
http://dx.doi.org/10.1002/rse2.24


Ramo R, Garcia M, Rodriguez D, Chuvieco E (2018) A data mining approach for global burning
area mapping. Int J Appl Earth Observ Geoinf 73:39–51

Remondino F (2011) Heritage recording and 3D modelling with photogrammetry and 3D
scanning. Remote Sensing 3:1104–1138

Rosenholm D, Torlegard K (1988) Three-dimensional absolute orientation of stereo models using
digital elevation models. Photogramm Eng Remote Sens 54(10):1385–1389

Rutzinger M, Rottensteiner F, Pfeifer N (2009) A comparison of evaluation techniques for
building extraction from airborne laser scanning. IEEE J Sel Topics Appl Earth Observ Remote
Sens 2(1):11–20

Ryu JH, Han KS, Hong S, Park NW, Lee YW, Cho J (2018) Satellite-based evaluation of the
post-fire recovery process from the worst forest case in South Korea. Remote Sens 10:918.
https://doi.org/10.3390/rs10060918

Santos JR, Mura JC, Paradella WP, Dutra LV, Goncalves FG (2008) Mapping recent deforestation
in the Brazilian Amazon using simulated L-band MAPSAR images. Int J Remote Sens 29
(16):4879–4884

Schanz D, Huhn F, Schroeder A (2018) Large-scale volumetric flow measurement of a thermal
plume using Lagrangian Particle Tracking (Shake-The-Box). In: Raffel M et al (eds) Particle
Image Velocimetry, Springer, 606–610. https://doi.org/10.1007/978-3-319-68852-7_18

Schroeder W, Oliva P, Giglio L, Csiszar IA (2014) The new VIIRS 375 m active fire detection
data product: algorithm description and initial assessment. Remote Sens Environ 143:85–96

Sefercik UG, Alkan M, Buyuksalih G, Jacobsen K (2013) Generation and validation of
high-resolution DEMs from Worldview-2 stereo data. Photogramm Rec 28(144):362–374

Shufelt JA (1999) Performance evaluation and analysis of monocular building extraction from
aerial imagery. IEEE Trans Pattern Anal Mach Intell 21(4):311–326

Silva Junior CHL, Aragao LEOC, Fonseca MG, Almeida CT, Vedovato LB, Anderson LO (2018)
Deforestation-induced fragmentation increases forest fire occurrence in Central Brazilian
Amazonia. Forests 9:305. https://doi.org/10.3390/f9060305

Solberg S, Astrup R, Weydahl DJ (2013) Detection of forest clear-cuts with Shuttle Radar
Topography Mission (SRTM) and Tandem-X InSAR data. Remote Sensing 5:5449–5462

Soto-Berelov M, Jones SD, Clarke E, Reddy S, Gupta V, Felipe MLC (2018) Assessing two large
area burnt area products across Australian Southern Forests. Int J Remote Sens 39(3):879–905

Souza CM, Siqueira JV, Sales MH et al (2013) Ten-year Landsat classification of deforestation
and forest degradation in the Brazilian Amazon. Remote Sens 5:5493–5513

Sun P, Zhang Y (2018) A probabilistic method predicting forest fire occurrence combining
firebrands and the weather-fuel complex in the northern part of the Daxinganling region. China
For 9:428. https://doi.org/10.3390/f9070428

Svancara LK, Scott JM, Loveland TR, Pidgorna AB (2009) Assessing the landscape context and
conversion risk of protected areas using satellite data products. Remote Sens Environ
113:1357–1369

Tao CV, Hu Y (2001) A Comprehensive Study of the Rational Function Model for
Photogrammetric Processing. Photogramm Eng Remote Sens 66(12):1477–1485

Tian L, Wang J, Zhou H, Wang J (2018) Automatic detection of forest fire disturbance based on
dynamic modelling from MODIS time-series observations. Int J Remote Sens 39(12):3801–
3815

Toschi I, Remondino F, Kellenberger T, Streilein A (2017) A survey of geomatics solutions for the
rapid mapping of natural hazards. Photogramm Eng Remote Sens 83(12):843–859

Toschi I, Allocca M, Remondino F (2018) Geomatics mapping of natural hazards: overview and
experiences. Int Archives Photogramm Remote Sens Spat Inf Sci 42(3/W4):505–512

Tucker CJ, Townshend JRG (2000) Strategies for monitoring tropical deforestation using satellite
data. Int J Remote Sens 21(6):1461–1471

Vega SGD, de las Heras J, Moya D (2018) Post-fire regeneration and diversity response to burn
severity in pinus halepensis Mill. forests. Forests 9:299. https://doi.org/10.3390/f9060299

Wallis R (1976) An approach to the space variant restoration and enhancement of images. In: Proc
of Symposium on Current Mathematical Problems in Image Science, Monterey, CA

Pre- and Post-Fire Comparison of Forest Areas in 3D 293

http://dx.doi.org/10.3390/rs10060918
http://dx.doi.org/10.1007/978-3-319-68852-7_18
http://dx.doi.org/10.3390/f9060305
http://dx.doi.org/10.3390/f9070428
http://dx.doi.org/10.3390/f9060299


Wheeler D, Guzder-Williams B, Petersen R, Thau D (2018) Rapid MODIS-based detection of tree
cover loss. Int J Appl Earth Obs Geoinf 69:78–87

Xu C, Manley B, Morgenroth J (2018) Evaluation of modelling approaches in predicting forest
volume and stand age for small-scale plantations forests in New Zealand with RapidEye and
LiDAR. Int J Appl Earth Observ Geoinf 73:386–396

Yu B, Chen F, Li B, Wang L, Wu M (2017) Fire risk prediction using remote sensed products: a
case of Cambodia. Photogrammetric Engineering and Remote Sensing 83(1):19–25

Zhang L, Gruen A (2004) Automatic DSM generation from linear array imagery data. Int Archives
Photogramm Remote Sens Spat Inf Sci 35(B3):128–133

Zhang L (2005) Automatic Digital Surface Model (DSM) Generation from Linear array Images.
Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland,
Mitteilungen Nr.88, p 219. ISBN 3-906467-55-4

Zhang L, Gruen A (2006) Multi-image matching for DSM generation from IKONOS imagery.
ISPRS J Photogramm Remote Sens 60:195–211

Zhang L, Kocaman S, Akca D, Kornus W, Baltsavias E (2006) Test and performance evaluation of
DMC images and new methods for their processing. In: Proceedings ISPRS commission I
symposium, Paris, 3–6 Jul 2006

Zhang Y, Song C, Band LE, Sun G, Li J (2017) Reanalysis of global terrestrial vegetation trends
from MODIS products: browning or greening? Remote Sens Environ 191:145–155

294 D. Akca et al.


	11 Pre- and Post-Fire Comparison of Forest Areas in 3D
	Abstract
	1 Introduction
	2 Forest Fire Prediction, Detection, Monitoring and Measurement
	3 FORSAT Methodology
	3.1 Pre-processing
	3.2 Geo-referencing
	3.3 DSM Generation
	3.4 3D Co-registration and Comparison
	3.5 Change Detection
	3.6 Error Assessment

	4 Experimental Results
	4.1 Cyprus Test Site
	4.2 Austria Test Site

	5 Conclusions
	References




