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ABSTRACT: 

 

Co-registration of point clouds of partially scanned objects is the first step of the 3D modeling workflow. The aim of co-

registration is to merge the overlapping point clouds by estimating the spatial transformation parameters. In computer vision and 

photogrammetry domain one of the most popular methods is the ICP (Iterative Closest Point) algorithm and its variants. There 

exist the 3D Least Squares (LS) matching methods as well (Gruen and Akca, 2005). The co-registration methods commonly use 

the least squares (LS) estimation method in which the unknown transformation parameters of the (floating) search surface is 

functionally related to the observation of the (fixed) template surface. Here, the stochastic properties of the search surfaces are 

usually omitted. This omission is expected to be minor and does not disturb the solution vector significantly. However, the a 

posteriori covariance matrix will be affected by the neglected uncertainty of the function values of the search surface. . This 

causes deterioration in the realistic precision estimates. In order to overcome this limitation, we propose a method where the 

stochastic properties of both the observations and the parameters are considered under an errors-in-variables (EIV) model. The 

experiments have been carried out using diverse laser scanning data sets and the results of EIV with the ICP and the conventional 

LS matching methods have been compared. 

 

1. INTRODUCTION 

 

3D object modeling plays an important role for many 

applications from reverse engineering to creating the real-

world models for virtual reality, architecture or deformation 

analysis. In the last decade, laser scanners had an utmost 

importance for 3D object modeling due to their ability of 

providing reliable 3D data very fast and directly. Since the 

range scanners are line-of-sight instruments, in many cases an 

object has to be scanned from different standpoints to be able 

to cover the whole object. As a result, separate point clouds, 

which are in their own local co-ordinate systems uniquely, are 

obtained. In order to form a 3D model, these point clouds 

have to be merged in one co-ordinate system. This process is 

called alignment or registration. Various methods were 

proposed and the studies in this area are still in progress 

especially in computer vision discipline including the most 

popular Iterative Closest Point (ICP) algorithm and its 

variants. Since the introduction of ICP by Chen and Medioni, 

(1991) and Besl and McKay, (1992), many variants have been 

introduced on the basic ICP concept. A detailed review of the 

ICP variants can be found at Akca, (2010) and Rusinkiewicz, 

(2001). Despite the popularity of the ICP, there are some 

disadvantageous aspects of it in terms of accuracy assesment 

of transformation parameters. ICP based algorithms generally 

uses closed-form solutions for the estimation of 

transformation parameters. The closed-form solutions cannot 

fully consider the statistical accuracy assesment of the 

estimated parameters. One another powerfull and adaptive 

method for the registration problem is the 3D least squares 

surface matching proposed by  Gruen and Akca, in (2005). 

The method is the extension and adaptation of mathematical 

model of Least Squares 2D image matching for the 3D 

surface matching problem. The transformation parameters of 

the search surfaces are estimated with respect to a template 

surface. The solution is achieved when the sum of the squares 

of the 3D spatial (Euclidean) distances between the surfaces 

are minimized. The parameter estimation is achieved using 

the Generalized Gauss-Markov model. Akca, (2010). At this 

model, the points on the template surface are considered as 

observations, contaminated by random errors, while the 

search surface points are assumed as error-free. 

                                                              (1) 

 

With the assumptions  
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where y is the template point, x is the search point, ey is the 

true error vector for template points, t is the translation vector, 

R is the rotation matrix, and P is the weight matrix. Here, and 

also in the ICP methods, the stochastic properties of the 

search surfaces are usually omitted. This omission is expected 

to be minor and does not disturb the solution vector 

significantly. However, the a posteriori covariance matrix will 

be affected by the neglected uncertainty of the function values 

of x. This causes deterioration in the realistic precision 

estimates. More details on this issue can be found in Gruen, 

(1985), Maas, (2002), Gruen and Akca, (2005), Kraus et al., 

(2006), and Akca, (2010). These algorithms consider the noise 

as coming from one measurement only, but in fact both 

surface measurements are corrupted by noise. To be able to 

overcome this undesirable situation and obtain more realistic 

precision estimation values, another approach which takes the 

stochastic properties of the elements of design matrix into 

consideration should be applied. The problem can be solved 

by using a model which is called in the literature as Errors-in-

Variables model or the total least squares (TLS). Markovsky 

and  Huffel, (2007) outlines the different solution methods 

and application areas of EIV model very detailed. Ramos and 
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Verriest, (1997) proposed to use the total least squares 

approach for the registration of m-D data. In their study, they 

use a mixed solution which is the combination of Least 

squares and Total Least squares methods for the registration 

of 2D medical images. However, they do not give any 

information about the precision of the transformation 

parameters. Akyılmaz, (2007) uses Total Least Squares 

method for coordinate transformation in Geodetic 

applications. Since the author uses a closed-form solution 

method in this study, there is not any information about 

precision of estimated parameters as well. A mathematical 

model is given by Neitzel, (2007) where an iterative Gauss-

Helmert type of adjustment model with the linearized 

condition equations is adopted. However, in this method the 

size of the normal equations to be solved increases 

dramatically depending on the number of conjugate points, 

since each point introduces three more Lagrange multipliers 

into the normal equations. Thus, the larger the number of 

conjugate points, the greater the normal equations to be 

solved.  

 

For an optimal solution of the so-called EIV problem, we 

propose a modified iterative Gauss-Helmert type of 

adjustment model. In this model, the rotation matrix R is 

represented in terms of unit quaternions q= [q0  q1  q2  q3]. 

Moreover, the dimension of the normal equations to be solved 

is dramatically reduced to the number of unknown 

transformation parameters which is six for the rigid-body 

transformation problem. The mathematical model has been 

implemented in MATLAB. This study mainly aims at 

comparing the proposed model with LS matching method in 

terms of the precision of estimated parameters by using 

diverse laser scanning data sets.  

 

2. ERRORS-IN-VARIABLES MODEL 

 

The aim of co-registration process is to transform search 

surface with respect to the template surface by establishing 

the correspondences between two overlapping data sets. 

Assuming the existence of two overlapping 3D data sets Qi 

and Pj (i=1,…,N and j=1,…,M), we can find a corresponding 

point in Pj for each point in Qi by using different error 

metrics, which Qi and Pj are the template and search surfaces 

respectively.  Once the appropriate correspondences were 

established between two point data sets the basic procedure is 

to estimate the transformation parameters using the 

correspondences. The geometric relationship is established by 

a six parameters3D rigid-body transformation. Eq. (3). 
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In the classical Gauss-Markov model, Eq. (1) represents the 

observation equation which assumes the template surface 

elements are observations contaminated by random the errors. 

In fact, the search surface elements are also erroneous and a 

true error vector should be added to these elements as well. 

The observation equations in EIV model are formed as 

 

               ).                   (4) 

 

If we apply this model to 3D rigid-body transformation, the 

mathematical model is established as; 

 

                                      (5) 

 

where vx is the n×1 residual vector of observations and vA is 

an n×m error matrix of the corresponding elements of design 

matrix. The elements of both vx and vA are independent and 

conforming the normal distributed with zero mean. Once a 

minimisation of [ ̃   ̃ ] is found, then any β satisfying  

(A +  ̃ ) ⋅β = l +  ̃   is the solution of the problem by Total 

Least Squares. 

         

2.1 Proposed Modified Gauss-Helmert Model 

The generalized total least squares solution of the 3D-

similarity transformation by introducing the quaternions as the 

representation of the rotation matrix*scale factor (S=sR) 

based on iteratively linearized Gauss-Helmert model has been 

presented by Akyilmaz, (2010, 2011). However, this model 

requires the solution of a normal matrix which includes the 

corresponding terms for transformation parameters as well as 

the Lagrange multipliers, thus yielding a larger size of system 

of equations to be solved at each iteration with the increase of 

the identical points of the transformation problem. Following 

the idea in Akyilmaz, (2010 and 2011), Kanatani and 

Niitsuma, (2012) has developed a new computational scheme 

for 3D-similarity transformation which they call Modified 

Iterative Gauss-Helmert model by reducing the so-called 

Lagrange multipliers and hence the size of the normal matrix 

is dramatically reduced. In other words, the unknowns to be 

solved at each iteration are equal to seven, i.e. the number of 

transformation parameters. This kind of a reduction provides 

advantage, especially in terms of computational aspects. We 

refer to Kanatani and Niitsuma, (2012) for details of the 

mathematical model. Modified Gauss-Helmert model in 

Kanatani and Niitsuma, (2012) is a seven parameters 

similarity transformation. Therefore, in our study, we 

modified the model by eliminating the scale factor in order to 

apply 6 parameters rigid-body transformation.  For this 

purpose we normalise the quaternion by using the 

q0²+q1²+q2²+q3² = 1 equality. Then the rotation matrix defined 
by quaternions is obtained as; 

 

S=[

 q
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]          (6) 
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In so-called model, let ai and bi  are the corresponding pairs 

(i=1,…,M) ;  Qxx[ai]  and Qxx[bi] are normalized covariance 

matrices;  ̅ and  ̅  are the true positions  of  ai and bi  

respectively. The optimal estimation of the similarity 

transformation parameters R (rotation), T (translation) and s 

(scale factor) in the sense of Maximum Likelihood is to 

minimize the Mahalanobis distance given as follows. 
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 and  

 

 ̅    ̅                       (8) 

 

Where S is the rotation matrix given in Eq. (6) 

Since the model is non-linear, it is linearized by the Taylor 

Series expansion. Finally, the total error vector is defined as 

 

                   (9) 

 

With the weight matrix;  
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After modifications, Eq. 7 can be expressed in the following 

form: 
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Differentiating (6) with respect to qi, i = 1, 2, 3 

 
  

   
     

 

We define a 3x3 Ui matrix as follows 
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After these definitions, parameters are estimated by the 

solution of following 6-D linear equation.   
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Since so-called model is non-linear, initial approximations of 

q and T are updated and iteration is repeated until it 

converges.  

2.2 Correspondence Search 

 

Correspondence search is the most critical part of all 

registration algorithms. The succes of a registration method 

depends on how correct correspondences were established 

between two data sets. False matches cause to uncorrect 

results. In order to prevent false matches, different type of 

constraints can be introduced. In our implementation, the 

correspondence search is guided by using two well-known 

error metrics. The first one is the point-to-point search which 

was introduced by Besl and McKay (1992) in their original 

ICP paper. According to this method, each available point in 

template surface is matched with the closest point in search 

surface. Then, the sum of the squared distances between the 

points in each correspondence pair is minimized. This 

procedure is very complex in terms of computational aspects 

and takes the most of the computation time. The procedure 

has been accelerated by using a kd-tree searcher in our 

implementation. The second error metric is the point-to-plane 

algorithm which was introduced by Chen and Medioni (1991). 

In point-to-plane error metric, the sum of the squared 

distances between each point in template data and the tangent 

plane at its corresponding destination point in search data is 

minimized. Due to the large search area and heavy 

mathematical computations like plane parameters, surface 

normal and Euclidian distance calculation, point-to-plane 

error metric is much slower than point-to-point version. On 

the other hand, the researchers have observed significantly 

better convergence rates with point-to-plane (Rusinkiewicz, 

2001). One solution for accelerating the point-to-plane 

version is to limit the search area of the candidate point at the 

search surface. Based on the advantageous parts of these two 

versions, both of them were used together in this study in 

order to benefit from the advantageous parts of them. The 

point-to-plane search was accelerated significantly by using a 

kd-tree nearest neighbor searcher. The coarse match point is 

found by the point-to-point search; consequently the 

procedure is followed by the point-to-plane search where the 

fine matching point is found. The fine matching point is 

searched inside the 6 neighboring triangles which are 

fictitiously formed around the coarse matching point. The fine 

matching point should lie inside of one of those six triangles, 

and should have the minimum spatial distance to the 

corresponding template point. Any point satisfying the both 

conditions are labeled as the fine matching point. 

 

2.3   Experimental Results 

 

Two examples are given below in order to show the capabilty 

of the proposed method and also to make a comparison 

between the conventional least squares and total least squares 

matching. All experiments were executed using home-

developed two different programmes created by using 

MATLAB computing language. Some available functions of 

MATLAB like kd-tree searcher were used directly instead of 

re-coding. 

In all experiments, the pre-alignment of template and search 

data sets were done manually by selecting at least 3 common 

points on two sets. The stopping criteria for both data sets was 

set as 0.001 mm for translation parameters and 0.001 degrees 

for rotation parameters.  

2.3.1 Façade of a historical building  

The first experiment is carried out by using 3D overlapping 

surface patches (Fig. 1) belonging to a historical building. The 

data was acquired by Leica C-10 time-of-flight type of laser 

scanner. Average point spacing of original data is 1.5 cm. But 

data was resampled in order to decrease the number of points 

and the resampled data has about 3 cm point spacing. These 

pre-aligned data sets were registered by using the two 

programs. The numerical results of this test are given in Table 

1. According to the obtained results, while aposteriori sigma 

naught value is slightly smaller for TLS than LS, theoretical 

precision values at LS are smaller. However, the difference 

between theoretical precision values is minor. 
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                                       (a)                (b)

 

Figure 1. Two overlapping data sets. (a) is the left scan and  (b) is the right scan of the facade                 
 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Historical building facade by TLS registration 
 
 

 

 

Model     No. of   

               Matched                                                                                                                                                

               Points                       (m)                        (m)           (m)               (m)          (deg)             (deg)           (deg) 

               

              

TLS         458    0.005515 0.000392      0.000581   0.000516     0.000034     0.000026    0.000038 

LS          544                           0.006890 0.000339      0.000500   0.000445     0.000029     0.000023    0.000033 

 

Table 2. Numerical results of ‘Historical Building’ data 
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2.3.2 Surface patch 

 

The second experiment is the matching of two surface patches 

(Fig. 3). The data is acquired by a IMAGER 5300 terrestrial 

laser scanner (Zoeller+Fröchlich). The average point spacing 

is 1 cm. Obtained numerical results for two different 

registrations are given in Table 2.  In this experiment also, the 

final sigma naught value at TLS is smaller than LS; and 

theoretical precisions are smaller for LS matching as it is in 

the first experiment. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                      (b) 
 

Figure 3. (a) is the template and (b) is the search surface. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                                     

(a)        (b) 
 

Figure 4. (a) is the registration with TLS ans (b) shows the residuals. 
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Model     No. of   

               Matched                                                                                                                                                

               Points                       (mm)                  (mm)          (mm)           (mm)           (deg)             (deg)           (deg) 

              

              

TLS         458    0.024763   0.002887      0.002883    0.004862    0.000244    0.000244     0.0001810                                        

LS          544                           0.035112 0.002510      0.002511    0.004239    0.000211    0.000210     0.000154 

 

Table 1. Numerical results of ‘surface patch’ data 
  

 

 

3. CONCLUSION AND DISCUSSION 

 

The motivation of this study is to investigate the error 

behaviours of parameter estimation of rigid-body 

transformation by applying EIV model which considers the 

both data sets are characterized as erroneous. The ommission 

of the stochastic properties of design matrix in the 

conventional Gauss-Markov model results in optimistic 

precision estimates. By taking the stochastic properties of the 

elements of the design matrix into account, it is possible to 

have more realistic precision estimates of unknowns with the 

proposed model. An implementation has been made in 

MATLAB computing language for the comparison of two 

mathematical models. The experimental tests show that the 

proposed method provides the more realistic values but the 

magnitude of the difference is minor. The final sigma naught 

values at both experiments are smaller for total least squares 

registration than conventional least sqaures. In this kind 

result, one can expect smaller theoretical precision values for 

individual estimation parameters for TLS as well. But the 

results show that these values are smaller at LS registration. 

This results indicate the higher values of parameters in 

covariance matrix in TLS estimation due to the contribution 

of the error vectors of search surface elements. It can 

obviously be stated that the TLS and LS methods do not differ 

in solution vector. However, statistical values obtained from 

TLS is slightly more realistic.  
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