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Abstract

3D surface matching would be an ill conditioned problem when the curvature of the object surface is either homogenous or
isotropic, e.g. for plane or spherical types of objects. A reliable solution can only be achieved if supplementary information or
functional constraints are introduced. In a previous paper, an algorithm for the least squares matching of overlapping 3D surfaces,
which were digitized/sampled point by point using a laser scanner device, by the photogrammetric method or other techniques, was
proposed [Gruen, A., and Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and
Remote Sensing 59 (3), 151–174.]. That method estimates the transformation parameters between two or more fully 3D surfaces,
minimizing the Euclidean distances instead of z-differences between the surfaces by least squares. In this paper, an extension to the
basic algorithm is given, which can simultaneously match surface geometry and its attribute information, e.g. intensity, colour,
temperature, etc. under a combined estimation model. Three experimental results based on terrestrial laser scanner point clouds are
presented. The experiments show that the basic algorithm can solve the surface matching problem provided that the object surface
has at least the minimal information. If not, the laser scanner derived intensities are used as supplementary information to find a
reliable solution. The method derives its mathematical strength from the least squares image matching concept and offers a high
level of flexibility for many kinds of 3D surface correspondence problem.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

For 3D object modelling, data acquisition must be
performed from different standpoints. The derived local
point clouds must be transformed into a common
system. This procedure is usually referred to as
registration. In the literature, several attempts have
been described concerning the registration of 3D point
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clouds. One of the most popular methods is the Iterative
Closest Point (ICP) algorithm developed by Besl and
McKay (1992), Chen and Medioni (1992) and Zhang
(1994). The ICP is based on the search for pairs of
nearest points in the two sets and estimates the rigid
body transformation that aligns them. Then, the rigid
body transformation is applied to the points of one set
and the procedure is iterated until convergence is
achieved.

In Besl and McKay (1992) and Zhang (1994) the ICP
requires every point in one surface to have a
corresponding point on the other surface. Alternatively,
the distance between the transformed points in one
metry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
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surface and corresponding tangent planes on the other
surfaces was used as a registration evaluation function
(Chen and Medioni, 1992; Bergevin et al., 1996; Pulli,
1999). The point-to-tangent plane approach gives a
better registration accuracy than the point-to-point
approach.

The parameters of the rigid body transformation are
generally estimated by the use of closed-form solutions,
mainly singular value decomposition and quaternion
methods. Eggert et al. (1997) and Williams et al. (1999)
provide an extensive review and comparison. The
closed-form solutions cannot fully consider the statis-
tical point error models. Zhang (1994) and Dorai et al.
(1997) weighted the individual points based on a priori
noise information. Williams et al. (1999), Guehring
(2001) and Okatani and Deguchi (2002) proposed
methods that can model the anisotropic point errors.

The gradient descent type of algorithms can support
full stochastic models for measurement errors, and
assure a substantially lower number of iterations than
the ICP variants (Szeliski and Lavallee, 1996; Neuge-
bauer, 1997; Fitzgibbon, 2001). The Levenberg–
Marquardt method is usually adopted for the estimation.

The ICP, and in general all surface registration
methods, requires heavy computations. Strategies
employed to reduce the computation time are: reduction
of the number of iterations, reduction of the number of
employed points, and speeding up the correspondence
computation. Extensive surveys on commonly used
methods are given in Jost and Huegli (2003), Park and
Subbarao (2003) and Akca and Gruen (2005).

Several reviews and comparison studies on surface
registration methods are available in the literature
(Jokinen and Haggren, 1998; Williams et al., 1999;
Campbell and Flynn, 2001; Rusinkiewicz and Levoy,
2001; Gruen and Akca, 2005).

When the surface curvature is either homogeneous or
isotropic, as is the case with all first or second order
surfaces, e.g. plane or spherical surfaces, the geometry-
based registration techniques will fail. In some studies,
surface geometry and intensity (or colour) information
have been combined in order to solve this problem.
Maas (2001) used the airborne laser scanner reflectance
images as complimentary to the height data for the
determination of horizontal shift parameters between the
laser scanner strips of flat areas. Roth (1999) and
Vanden Wyngaerd and Van Gool (2003) used feature-
based methods in which interest points and regions are
extracted from the intensity images. More often the
intensity information is processed as an extra distance
value under an ICP algorithm in order to reduce the
search effort for corresponding point pairs or in order to
eliminate the ambiguities due to inadequate geometric
information on the object surface (Weik, 1997; Johnson
and Kang, 1999; Godin et al., 2001; Yoshida and Saito,
2002).

In a previous work, an algorithm for the least squares
matching of overlapping 3D surfaces, called Least
Squares 3D Surface Matching (LS3D), was proposed
(Gruen and Akca, 2005). It estimates the transformation
parameters between two or more fully 3D surfaces,
using the Generalized Gauss–Markoff model, minimiz-
ing the sum of the squares of the Euclidean distances
between the surfaces. This formulation gives the
opportunity of matching arbitrarily oriented 3D surfaces
simultaneously, without using explicit tie points. The
mathematical model introduced in this paper is a
generalization of the least squares image matching
method, in particular the method given by Gruen (1985).
For the details of the mathematical modelling and
execution aspects, the reader is referred to Gruen and
Akca (2005).

When the object surface lacks sufficient geometric
information, i.e. homogeneity or isotropicity of curva-
tures, the basic algorithm will either fail or find a side
minimum. This work proposes a solution in which
available attribute information, e.g. intensity, colour, tem-
perature, etc., is used to form quasisurfaces in addition to
the actual ones. The matching is performed by simul-
taneous use of surface geometry and attribute information
under a combined estimation model. The formation of the
quasisurfaces andmathematical modelling of the problem
are given in the following section. The experimental re-
sults based on terrestrial laser scanner point clouds are
presented in the third section.

2. Simultaneous matching of surface geometry and
intensity

2.1. Problem definition

f (x, y, z), being the template surface, is a discrete 3D
function, which represents an object surface. g (x, y, z),
being the search surface, is its conjugate part, which was
digitized from a different viewpoint or at a different time
or by a different sensor. Every sampled element of the
template and the search surfaces has an attribute value in
addition to the 3D coordinates.

Matching is established in an ideal case:

f ðx; y; zÞ ¼ gðx; y; zÞ ð1Þ

Because of the effects of random error, Eq. (1) is not
consistent. Therefore, a true error vector e (x, y, z) is
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added, assuming that the template noise is independent
of the search noise.

f ðx; y; zÞ−eðx; y; zÞ ¼ gðx; y; zÞ ð2Þ
The problem is estimating the parameters of a 3D
transformation, which satisfies the least squares matching
of the search surface g (x, y, z) to the template f (x, y, z).
This is achieved by minimizing a goal function, which
measures the sum of the squares of the Euclidean
distances between the surfaces.

In order to perform a least squares estimation, Eq. (2) is
expanded using the Taylor series, of which only the linear
terms are retained:

−eðx; y; zÞ ¼ ∂g0ðx; y; zÞ
∂x

dxþ ∂g0ðx; y; zÞ
∂y

dy

þ ∂g0ðx; y; zÞ
∂z

dz−ð f ðx; y; zÞ−g0ðx; y; zÞÞ
ð3Þ

with notations

gx ¼ ∂g0ðx; y; zÞ
∂x

; gy ¼ ∂g0ðx; y; zÞ
∂y

;

gz ¼ ∂g0ðx; y; zÞ
∂z

ð4Þ

where the terms {gx, gy, gz} are the numerical first
derivatives of the function g (x, y, z) and the terms {dx, dy,
dz} are the differentiation of the selected 3D transforma-
tion model. A 7-parameter 3D similarity transformation is
used for the geometric relationship.

After further expansions, Eq. (3) gives in matrix
notation

−e ¼ Ax−l; P ð5Þ
where A is the design matrix, x is the parameter vector
which here contains three translation, one scale and three
rotation parameters,P=Pll is the a priori weightmatrix, and
l= f (x, y, z)−g0 (x, y, z) is the discrepancy vector that
consists of the Euclidean distances between the template
and correspondent search surface elements.

The parameters are introduced into the system as
observables with the associated weight coefficient matrix
Pb.

−eb ¼ Ix−lb; Pb ð6Þ
where I is the identity matrix and lb is the (fictitious)
observation vector. The joint system equations (5) and (6)
are solved by applying the least squares criteria. The reader
is referred to Gruen and Akca (2005) for details of the
derivation and solution of Eqs. (5) and (6).
When there is a lack of sufficient geometric
information (homogeneity or isotropicity of curvatures),
the procedure may fail, since there is not a unique
solution geometrically, e.g. when matching two planes
or spherical objects. An object surface may have some
attribute information attached to it. Intensity, colour and
temperature are well known examples. Most of the laser
scanners can supply intensity information in addition to
the Cartesian coordinates for each point, or an additional
camera may be used to collect texture. A solution is
proposed that can simultaneously match intensity
information and geometry under a combined estimation
model. In this approach the intensity image of the point
cloud also contributes observation equations to the
system, considering the intensities as supplementary
information to the range image.

2.2. Formation of quasisurfaces

Rather than adopting a feature-based or step-wise
approach, this method sets up quasisurfaces from
intensity information in addition to the actual surfaces.

Surface representation is carried out in two different
forms; triangle and grid mesh forms. Both of these are
first degree C0 continuous representations. Surface
topology is established simply by reading the standard
laser scanner output files in ASCII format and loading
them in the scan-line order.

A hypothetical example of forming the quasisurfaces is
given in Fig. 1. The procedure starts with the calculation
of surface normal vectors at each data point. The actual
surface will include noise and surface spikes (Fig. 1b),
which lead to unrealistic calculations for the normal
vectors. To cope with the problem, a moving average or
median type filtering process could be employed. But still
some noise would remain depending on the window size.

An optimum solution is the least squares fitting of a
global trend surface to the whole point cloud (Fig. 1c). It
will suppress the noise component and preserve the
global continuity of the normal vectors along the
surface. The parametric bi-quadratic trend surface was
chosen, which is sufficient to model the quadric type of
surfaces, e.g. plane, sphere, ellipsoid, etc. For the
template surface patch f (x, y, z):

Fðu;wÞ ¼
X2

i¼0

X2

j¼0

biju
iw j ð7Þ

where u, w∈ [0,1]2, Fðu;wÞaR3 is the position vector
of any point on the trend surface, and bijaR3 are the
algebraic coefficients, which are estimated by least
squares fitting.



Fig. 1. Forming the quasisurface. (a) Point cloud with intensity information, (b) meshed surface of the point cloud, (c) trend surface fitted to the point
cloud, (d) normal vectors attached onto the actual surface, and (e) generated quasisurface in addition to the actual one.
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For each point, the normal vector nf is calculated on
the trend surfaceF(u,w) and attached to the actual surface
f (x, y, z) (Fig. 1d):

nf ¼ nf ðu;wÞ ¼ Fu � Fw

jjFu � Fwjj ð8Þ

where Fu and Fw are the tangent vectors along the u and
w-axes, respectively.

Finally, the quasisurface fc (x, y, z) is formed in such
a way that each point of the actual surface f (x, y, z) is
mapped along its normal vector nf up to a distance
proportional to its intensity value cf (Fig. 1e).

fcðx; y; zÞ ¼ f ðx; y; zÞ þ nf kcf ð9Þ

where λ is an appropriate scalar factor for the conversion
from the intensity range to the Cartesian space.

Rather than the actual surface f (x, y, z), the trend
surface F(u,w) can also be defined as the datum, which
leads to

fcðx; y; zÞ ¼ Fðu;wÞ þ nf kcf ð10Þ

This isolates the geometric noise component from the
quasisurface fc (x, y, z), but strongly smoothes the
geometry.

Eqs. (9) and (10) assume a fairly simplistic radiometric
model (intensities are mapped perpendicular to the
geometric surface). This model can be refined by
considering an appropriate illumination model.
The same procedure is performed for the search
surface g (x, y, z) as well:

gcðx; y; zÞ ¼ gðx; y; zÞ þ ngkcg ð11Þ

2.3. The estimation model

Eq. (2) should also be valid for the quasisurfaces
under the assumption that similar illumination condi-
tions exist for both the template and search surfaces:

fcðx; y; zÞ−ecðx; y; zÞ ¼ gcðx; y; zÞ ð12Þ

The random errors of the template and search quasisur-
faces are assumed to be uncorrelated. The contrast and
brightness differences or in the extreme case specular
reflection will cause model errors, and deteriorate the
reliability of the estimation. The radiometric variations
between the template and search surface intensities
should be reduced before matching by pre-processing or
appropriate modelling in the estimation process by the
use of extra parameters.

For two images of an object acquired by an optical-
passive sensor, e.g. a CCD camera, an intensity transfer
function such as (cf = r0+cg r1) could be suitable for the
radiometric adaptation, where r0 (shift) and r1 (scale)
are radiometric correction parameters. In the case of
laser scanner derived intensity images, the radiometric
variations are strongly dependent on both the incident
angle of the signal path with respect to the normal to the
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object surface and the object-to-sensor distance. Thus,
for a plane type of object, the radiometric variations can
be modelled in first approximation as in the following:

fcðx; y; zÞ−ecðx; y; zÞ ¼ gcðx; y; zÞ þ r0 þ ur1 ð13Þ
where u is the abscissa of the search trend surface
G(u,w), considering that the u-axis is the horizontal
direction. In other words, the u-axis is the principal
direction of change of the incident angles. Depending on
the characteristics of the scan data, it can be replaced by
ordinate value w, or another type of parameterization. In
general a second order bivariate polynomial (r0+ur1+
wr2+uwr3+u

2r4+w
2r5+u

2wr6+uw
2r7+u

2w2r8) or an
appropriate subpart of it can be used.

Although the radiometric parameters r0 and r1 are
linear a priori, they are expanded using the Taylor series.
Eq. (13) in linearized form gives:

−ecðx; y; zÞ ¼ g0c ðx; y; zÞ
∂x

dxþ g0c ðx; y; zÞ
∂y

dy

þ g0c ðx; y; zÞ
∂z

dzþ dr0 þ udr1−ðfcðx; y; zÞ
−g0c ðx; y; zÞ−fr00 þ ur01; nggÞ

ð14Þ
with notations

gcx ¼ ∂g0c ðx; y; zÞ
∂x

; gcy ¼ ∂g0c ðx; y; zÞ
∂y

;

gcz ¼ ∂g0c ðx; y; zÞ
∂z

ð15Þ

where the terms {gcx, gcy, gcz} stand for the numerical
derivatives of the quasi-search surface function. The
first approximations of the radiometric parameters are
r0
0 = r1

0 =0. At the end of each iteration, the quasi-search
surface gc

0 (x, y, z) is transformed to a new state using
the updated set of transformation parameters, and
subsequently re-shaped by the current set of radiometric
parameters r0

0 +ur1
0 along the normal vectors ng, which

are calculated on the search trend surface G(u,w).
The terms {dx, dy, dz} relate Eqs. (3) and (14) to each

other.
The quasisurfaces are treated like actual surfaces in the

estimation model. They contribute observation equations
to the design matrix, joining the system by the same set of
transformation parameters. After further expansion and
with the assumptions E{ec}=0 and E{ec ec

T}=σ0
2Pc

−1,
Eq. (14) becomes

−ec ¼ Acx−lc; Pc ð16Þ
where ec,Ac, x, and Pc are the true error vector, the design
matrix, the parameter vector, and the associated weight
coefficient matrix for the quasisurface observations,
respectively, and lc is the constant vector that contains
the Euclidean distances between the template and
corresponding search quasisurface elements. Here, the
vector x is extended to include the radiometric parameters
in addition to the transformation parameters.

The hybrid system in Eqs. (5), (6) and (16) is of the
combined adjustment type that allows simultaneous
matching of geometry and intensity. The least squares
solution of the system gives

̂x ¼ ðATPAþ Pb þAT
cPcAcÞ−1ðATPl þ Pblb

þAT
cPclcÞ ð17Þ

In the experiments, weights for the quasisurface
observations are selected as (Pc)ii<(P)ii, and the inten-
sity measurements of the (laser) sensor are considered
to be uncorrelated with the distance measurements
(E{ec eT}=0) for the sake of simplicity of the
stochastic model.
3. Experimental results

Three practical examples are given to show the
capabilities of the method. Although the first example
does not utilize the attribute information, it does serve to
discuss the optimism of the precision estimates. The last
two examples show the advantage of the joint use of
surface geometry and attribute information.

All experiments were carried out using self-devel-
oped C/C++ software that runs on Microsoft Windows®
OS. In all experiments the initial approximations of the
unknowns were provided by interactively selecting 3
common points on both surfaces before matching. Since
in all data sets there was no scale difference, the scale
factor was fixed to unity. The iteration criteria values
were selected for the elements of the translation vector
as 1.0e−4 m in the “plant” example, and 2.0e−4 m in
the “ball” and “wall painting” examples and for the
rotation angles 1.0e−3 gon in the “plant” example, and
5.0e−3 gon in the “ball” and “wall painting” examples.
They vary according to the unit and resolution of the
data and size of the object volume.

The first example is the registration of three point
clouds of an industrial plant (Fig. 2). The scanning was
performed by the HDS 2500 (Leica Geosystems) laser
scanner. The average point spacing is 12 mm. The first
and third point clouds (Fig. 2a and c) werematched to the
second one (Fig. 2b) using the basic algorithm of the
LS3D surface matching method. The numerical results
of the matching of the first and third point clouds are
given in parts I and II of Table 1, respectively. In Table 1,



Fig. 2. Example of “plant”. (a), (b), (c) First, second and third point cloud, and (d) composite point cloud after the LS3D surface matching. Note that
laser scanner derived intensities are back-projected onto the point clouds only for the purpose of visualization.
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“No. of points” column stands for the number of the
remaining correspondences at the last iteration, resulting
from a simple robust estimation principle, which aims to
eliminate only the large outliers and occlusions. More
details can be found in Gruen and Akca (2005).

Even though it is a very complex environment with
many occlusions, the matching process is successful.
Small magnitudes of the theoretical precisions of the
parameters indicate a proper fit along all directions. This
example shows that the basic algorithm can successfully
Table 1
Numerical results of “plant” example

# Surface
type

No. of
points

No. of observation equations
(nl+nb+nc)

N
i

I P 245041 245041+7+0 6
B 5

II P 323936 323936+7+0 7
B 6

Iʺ P 20407 20407+7+0 6
B 5

IIʺ P 37983 37983+7+0 8
B 8

P: Plane surface representation in triangle mesh form.
B: Bi-linear surface representation in grid mesh form.
nl, nb, nc: Number of observation equations for actual surfaces, parameters a
find the solution in the presence of sufficient surface
geometry.

However, the theoretical precisions are optimistic.
They are much beyond the accuracy limit of the sensor.
In order to see the effect of the redundancy on the
theoretical precision values, a further matching process
was carried out. Rather than the whole overlapping areas,
occlusion-free cooperative sub-patches were matched.
The results are given in parts Iʺ and IIʺ of Table 1.
Although the precision values increased, they are still
o. of
terations

σ̂0
(mm)

σ̂tx /σ̂ty /σ̂tz
(mm)

σ̂ω /σ̂φ /σ̂κ
(1.0e−02 gon)

2.78 0.03 / 0.03 / 0.01 0.01 / 0.01 / 0.03
2.79 0.03 / 0.03 / 0.01 0.01 / 0.01 / 0.03
2.54 0.02 / 0.02 / 0.01 0.01 / 0.01 / 0.02
2.52 0.02 / 0.02 / 0.01 0.01 / 0.01 / 0.02
2.11 0.09 / 0.09 / 0.04 0.05 / 0.04 / 0.08
2.09 0.09 / 0.09 / 0.04 0.05 / 0.04 / 0.08
2.01 0.04 / 0.04 / 0.02 0.03 / 0.03 / 0.07
2.00 0.04 / 0.05 / 0.02 0.03 / 0.03 / 0.07

nd quasisurfaces, respectively.



Fig. 3. Example of “ball”. (a) The search point cloud, (b) the template point cloud, and (c) the composite point cloud after the combined matching of
geometry and intensity. Note that laser scanner derived intensities are back-projected onto the point clouds.
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optimistic, mainly due to the stochastic properties of the
search surfaces that have not been considered as such in
the estimation model, as is typically done in least squares
matching. The omissions are expected to be minor and
do not disturb the solution vector significantly. However,
the a posteriori covariance matrix will be affected by the
neglected uncertainty of the function values g (x, y, z).
This deteriorates the realistic precision estimates. More
details on this issue can be found in Gruen (1985), Maas
(2002) and Gruen and Akca (2005).

The second experiment refers to simultaneous
matching of surface geometry and intensity. A soccer
ball (Fig. 3) was scanned using the IMAGER 5003
(Zoller+Fröhlich) laser scanner. The average point
spacing is 2 mm. Laser scanner derived reflectance
values were used as intensity information. The intensi-
ties of the template and search surfaces were adapted by
pre-processing prior to the matching. However, it was
not possible to fully adjust the radiometric variations.
This degrades the quality of the quasisurfaces. The
actual surface observations were considered as the unit
weight (P)ii=1.00. Consequently, weights for the
quasisurfaces observations were selected as (Pc)ii=0.20.
The numerical results are given in part III of Table 2. In
Table 2, the numbers of equations for the actual surface
and quasisurface observations differ. Although they are
the same at the beginning, during the iteration observa-
tions of the actual and quasisurfaces containing gross
Table 2
Numerical results of “ball” example

# Surface
type

No. of
points

No. of observation equations
(nl+nb+nc)

No.
itera

IIIa P 2548 2548+7+2617 12
B 14

IIIʺ P 2589 2589+7+0 21
B 22

RMSE: root mean square error of the residuals of the actual surface observa
a Datum is the actual surface f/g (x, y, z).
errors, are excluded by the aforementioned robust
estimation principle, resulting in a different number of
equations for the two surfaces.

The slow convergence and slightly high standard
deviation values are the result of the low data quality.
Actually, the test object is not suitable for measuring by
a medium-range laser scanner due to its non-diffuse
reflectance property. This caused noisy and erroneous
points in the range data, especially along the object
silhouettes, and specular reflections in the intensity
data.

For the purpose of comparison, the same experiment
was run with the only surface geometry option of the
LS3Dmatching method. An identical solution vector was
found but apparently with poorer theoretical precision
values: for the translation parameters 2.30, 2.89 and
1.47 mm and for the rotation angles 26.70c, 18.09c and
16.04c along the x–y–z axes, respectively (part IIIʺ of
Table 2). In fact, the test object does not have an ideal
spherical shape. The shallow slots at the junctions of the
pentagon parts of the ball (Fig. 3) prevent the failure of the
only surface geometry option.

The last experiment is the matching of two partial scans
of a wall painting in Neuschwanstein Castle in Bavaria,
Germany (Fig. 4). The scanning was performed using the
IMAGER 5003 terrestrial laser scanner. The average point
spacing is 5 mm. The search surface (Fig. 4a) was matched
to the template one (Fig. 4b) by simultaneous use of surface
of
tions

RMSE
(mm)

σ̂tx /σ̂ty /σ̂tz
(mm)

σ̂ω /σ̂φ /σ̂κ
(1.0e−02 gon)

1.14 1.20 / 1.56 / 0.81 14.54 / 9.68 / 9.27
1.11 1.16 / 1.46 / 0.78 13.92 / 9.26 / 8.88
1.70 2.30 / 2.89 / 1.47 26.70 / 18.09 / 16.04
1.50 2.02 / 2.62 / 1.31 24.40 / 15.66 / 13.91

tions.



Fig. 4. Example of “wall painting”. Actual (a) search and (b) template surfaces, generated (c) quasi-search and (d) quasi-template surfaces, (e)
composite point cloud after the simultaneous matching of geometry and intensity by LS3D, and (f) result of matching of only surface geometry by
LS3D. Note that laser scanner derived intensities are back-projected onto the point clouds (a), (b), (e) and (f).
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geometry and intensity information. Laser scanner derived
reflectance values were used as intensity information. The
weights were selected for the actual surface observations as
(P)ii=1.00 and for the quasisurface observations as
(Pc)ii=0.75. The numerical results are given in parts IV
and Vof Table 3.

Since the object is a plane, surface geometry alone is
not enough for the matching. Using the combined
approach of matching surface geometry and intensity of
the LS3D, a successful solution has been achieved. The
generated quasisurfaces (Fig. 4c and d) have been used in
addition to the actual ones (Fig. 4a and b) in the matching
process. The radiometric variations between the template
and search surface intensities were modelled in the
estimation by two extra parameters r0 (shift) and r1
(scale). The use of the trend surface as datum gives a
slightly better convergence rate.
Table 3
Numerical results of “wall painting” example

# Surface
type

No. of
points

No. of observation equations
(nl+nb+nc)

N
ite

IVa P 31859 31859+9+31852 14
B 13

Vb P 31858 31858+9+31843 13
B 12

Vʺ P 31842 31842+7+0 4
B 3

a Datum is the actual surface f/g (x, y, z).
b Datum is the trend surface F/G (u,w).
Another comparison has been made by matching the
same data set using the basic algorithm of the LS3D surface
matching method. It immediately converged to the closest
local minimum of the initial approximations, hence to a
false solution. The existing noise in the data avoids the
singularity of the normal equations matrix. Although the
matching along the depth direction is correct, there is an
incorrect solution along the lateral direction due to
ambiguity of the surface information (Fig. 4f). The theo-
retical precisions are slightly worse than those given in
parts IV and Vof Table 3, i.e. 0.03, 0.22 and 0.16 mm for
the translation parameters and 0.37c, 0.35c and 0.46c for the
rotation angles along the x–y–z axes, respectively (part Vʺ
of Table 3). The differences are not significant, but
consistent. The depth direction related parameters tx, ty
and κ show almost the same values with respect to the
values produced by the joint use of surface geometry and
o. of
rations

RMSE
(mm)

σ̂tx /σ̂ty /σ̂tz
(mm)

σ̂ω /σ̂φ /σ̂κ
(1.0e−02 gon)

1.67 0.02 / 0.21 / 0.12 0.28 / 0.25 / 0.46
1.72 0.02 / 0.21 / 0.12 0.29 / 0.26 / 0.44
1.68 0.02 / 0.19 / 0.11 0.25 / 0.23 / 0.41
1.73 0.02 / 0.19 / 0.11 0.26 / 0.24 / 0.40
1.72 0.03 / 0.22 / 0.16 0.37 / 0.35 / 0.46
1.77 0.03 / 0.21 / 0.18 0.42 / 0.38 / 0.45
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intensity, as expected, whereas the lateral direction related
parameters obviously have greater magnitude.

4. Conclusions

Least squares image matching is a fundamental
measurement algorithm, and has been applied to a great
variety of data matching problems due to its strong
mathematical model. One of its straightforward extensions,
applied to 3D object matching, ismultiple cuboidmatching
in 3D voxel space (Maas, 1994;Maas andGruen, 1995). In
a previous work, it was employed for the 3D surface
matching case (Gruen and Akca, 2005). In this paper, a
method is proposed, based on the previouswork, for the co-
registration of surfaces whose curvature is either homoge-
neous or isotropic.

The proposed method accommodates the available
attribute information and surface geometry under a
combined estimation model. If available, any kind of
functional constraint can also be introduced to the
system. The attribute information is utilized by gener-
ating the quasisurfaces in addition to the actual ones.
Any type of attribute information contributes one more
quasisurface layer to the data. Therefore, it generalizes
the problem to matching of isosurfaces rather than single
surfaces.

The least squares concept allows for the monitoring of
the quality of the final results by means of precision and
reliability criteria. These measures give a quantitative
insight into the data content, and help to assess the success
level of the solution. Experiments show that as long as the
object surface has minimal information, e.g. very small
structures on it, the basic algorithm, which uses only surf-
ace geometry, can find an acceptable solution. When the
object surface is a plane or quadric, the surface geometry
approach does not numerically fail as the sensor noise
prevents the normal equation matrix from becoming
singular. However, it finds a side minimum as the solution.
In this case, the proposed method can find a reliable solut-
ion by introducing supplementary attribute information
into the system. In the experiments, the laser scanner
derived intensities were used as the supplementary in-
formation. The practical examples demonstrate the capa-
bility of the technique. Special attention should be paid to
the radiometric variations between the surfaces. Additional
radiometric correction parameters have been added to the
mathematical model. This gives better results than the pre-
processing option.

The concept is not restricted to the registration of laser
scanner point clouds. It can find more application areas
for cases where diverse types of attribute information are
used.
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