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Abstract

The automatic co-registration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This multiple

registration problem can be defined as a surface matching task. We treat it as least squares matching of overlapping surfaces.

The surface may have been digitized/sampled point by point using a laser scanner device, a photogrammetric method or other

surface measurement techniques. Our proposed method estimates the transformation parameters of one or more 3D search

surfaces with respect to a 3D template surface, using the Generalized Gauss–Markoff model, minimizing the sum of squares of

the Euclidean distances between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D surface

patches. It fully considers 3D geometry. Besides the mathematical model and execution aspects we address the further

extensions of the basic model. We also show how this method can be used for curve matching in 3D space and matching of

curves to surfaces. Some practical examples based on the registration of close-range laser scanner and photogrammetric point

clouds are presented for the demonstration of the method. This surface matching technique is a generalization of the least

squares image matching concept and offers high flexibility for any kind of 3D surface correspondence problem, as well as

statistical tools for the analysis of the quality of final matching results.

D 2005 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Laser scanners can measure directly 3D coordinates

of huge amounts of points in a short time period. Since
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the laser scanner is a line-of-sight instrument, in many

cases the object has to be scanned from different

viewpoints in order to completely reconstruct it.

Because each scan has its own local coordinate system,

all the local point clouds must be transformed into a

common coordinate system. This procedure is usually

referred to as registration. Actually the registration is

not a problem specific to the laser scanner domain. Also
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in photogrammetry we face many similar problems.

The emphasis of our work is to investigate the most

general solution of the registration problem on a

theoretical basis and to give practical examples for

the demonstration of the method.

The following section gives an extensive literature

review on previous work about 3D surface and curve

matching, covering a diversity of scientific disciplines.

The proposed method is mathematically based on

Least Squares Matching (LSM), which is a fundamen-

tal measurement algorithm and a powerful solution for

many essential photogrammetric tasks. Section 3

briefly lists the algorithmic developments, and

describes where the proposed method stands among

them. Section 4 explains the basic estimation model

and gives a comprehensive discussion on the imple-

mentation details, precision and reliability issues,

convergence behaviour, and computational aspects.

The same model can also be used for the matching of

3D space curves with each other or with a surface.

This issue is addressed conceptually in Section 5.

Section 6 presents some experimental results based on

the registration of close-range laser scanner and

photogrammetric point clouds to demonstrate the

capabilities of the method. Finally, Section 7 gives

the conclusions, pointing out further extensions and

future works.
2. Literature review

2.1. Review of previous work on surface matching

In the past, several efforts have been made

concerning the registration of 3D point clouds,

especially in the Computer Vision area. One of the

most popular methods is the Iterative Closest Point

(ICP) algorithm developed by Besl andMcKay (1992),

Chen and Medioni (1992), and Zhang (1994). The

original version of ICP is based on the search of pairs of

nearest points in the two sets, and estimating the rigid

transformation, which aligns them. Then, the rigid

transformation is applied to the points of one set, and

the procedure is iterated until convergence. The ICP

assumes that one point set is a subset of the other.When

this assumption is not valid, false matches are created

which negatively influences the convergence of the

ICP to the correct solution (Fusiello et al., 2002).
Several variations and improvements of the ICP

method have been made (Masuda and Yokoya, 1995;

Bergevin et al., 1996). From a computational expense

point of view it is highly time consuming due to the

exhaustive search for the nearest point (Sequeira et al.,

1999). In Besl and McKay (1992), and Zhang (1994)

works the ICP requires every point in one surface to

have a corresponding point on the other surface. An

alternative approach to this search schema was

proposed by Chen and Medioni (1992). They used

the distance between the surfaces in the direction

normal to the first surface as a registration evaluation

function instead of point-to-nearest point distance. The

point-to-tangent plane distance idea was originally

proposed by Potmesil (1983). In Dorai et al. (1997) the

method of Chen and Medioni was extended to an

optimal weighted least squares framework. Zhang

(1994) proposed a thresholding technique using robust

statistics to limit the maximum distance between

points. Masuda and Yokoya (1995) used the ICP with

random sampling and least median square error

measurement that is robust to a partially overlapping

scene.

Okatani and Deguchi (2002) proposed the best

transformation to align two range images by taking

into account the measurement error properties, which

is mainly dependent on both the viewing direction and

the distance to the object surface. Ikemoto et al.

(2003) presented a hierarchical method to align

warped meshes caused by scanner calibration errors.

In the ICP algorithm and its variants main

emphasis is put on the estimation of a 6-parameter

rigid body transformation without uniform scale

factor. There are a few reports in which higher order

geometric deformations are parameterized (Feldmar

and Ayache, 1996; Szeliski and Lavallee, 1996).

To tackle the exhaustive search problem of ICP

Park and Subbarao (2003) gave a fast method for

searching correspondences using the sensor acquis-

ition geometry. In addition they gave an overview

over the three mostly employed methods, i.e., point-

to-point, point-to-(tangent) plane, and point-to-projec-

tion. Another fast implementation of the ICP using the

multi-resolution and neighborhood search was given

in Jost and Huegli (2003).

In Turk and Levoy (1994) a method for combining

a collection of range images into a single polygonal

mesh that completely describes the object was
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proposed. This method first aligns the meshes with

each other using a modified ICP, and stitches together

adjacent meshes to form a continuous surface that

correctly captures the topology of the object. Curless

and Levoy (1996) proposed a volumetric method for

integration of the range images. Two other volumetric

approaches were given in Pulli et al. (1997), and

Hilton and Illingworth (1997).

A quite different registration approach has been

proposed in Johnson andHebert (1998, 1999). Pairwise

registration is accomplished using spin images, an

alternative representation finding point corresponden-

ces. The final transformation is refined and verified

using a modified ICP algorithm. To generate the spin

image of a point in a 3D point cloud, a local basis is

computed at an oriented point (3D point with surface

normal) on the surface of an object represented as a

polygonal surface mesh. The positions of other points

with respect to the basis can then be described by two

parameters. By accumulating these parameters in a 2D

array, a descriptive image associated with the oriented

point is created. Because the image encodes the

coordinates of points on the surface of an object with

respect to the local basis, it is a local description of the

global shape of the object and is invariant to rigid

transformations (Johnson and Hebert, 1998). In Guar-

nieri et al. (2003) spin images were used for the

automatic detection of common areas, and initial

alignment between the range image pairs.

The Iterative Closest Compatible Point (ICCP)

algorithm has been proposed in order to reduce the

search space of the ICP algorithm (Godin et al., 1994,

2001; Godin and Boulanger, 1995). In the ICCP

algorithm, the distance minimization is performed

only between the pairs of points considered compat-

ible on the basis of their viewpoint invariant attributes

(normalized color/intensity, curvature, and other

attributes). In Sharp et al. (2002) a conceptually

similar method called Iterative Closest Points using

Invariant Features (ICPIF) has been introduced. This

method chooses nearest-neighbor correspondences

according to a distance metric, which is a scaled

sum of the positional and feature distances. Roth

(1999) proposed a method that exploits the intensity

information supplied by the laser scanner device. It

firstly finds the points of interest in the intensity data

of each range image using an interest operator. Then,

the 3D triangles, which are constructed by 2D interest
points, are matched. In Stamos and Leordeanu (2003)

another feature-based registration approach, which

searches line and plane pairs in 3D point cloud space

instead of 2D intensity image space, has been

adopted. The pairwise registrations generate a graph,

in which the nodes are the individual scans and the

edges are the transformations between the scans.

Finally, the graph algorithm registers each individual

scan with respect to a central pivot scan. There can be

found many other feature-based ICP approaches in the

literature (Higuchi et al., 1995; Chua and Jarvis, 1996;

Feldmar and Ayache, 1996; Thirion, 1996; Soucy and

Ferrie, 1997; Yang and Allen, 1998; Vanden Wyng-

aerd et al., 1999).

In Silva et al. (2003) Genetic Algorithms (GA) in

combination with hill-climbing heuristics were

applied to the range image registration problem. Some

comparative studies of ICP variants have been made

in Rusinkiewicz and Levoy (2001) and Dalley and

Flynn (2002). A highly detailed survey on the

registration methods as well as recognition and 3D

modeling techniques was given in Campbell and

Flynn (2001).

Since most of the developed range image registra-

tion methods need an initial approximate alignment,

there are some works on the issue of pre-alignment. In

Murino et al. (2001) a method based on 3D skeletons

was introduced. 3D skeletons are first extracted from

both range images, and then matched to each other in

order to find the pre-alignment. A frequency domain

technique based on Fourier transformation was given

in Lucchese et al. (2002) as a pre-alignment method.

An automatic pre-alignment method without any prior

knowledge of the relative viewpoints of the sensor or

the geometry of the imaging process was given in

Vanden Wyngaerd and Van Gool (2002). It matches

bitangent curve pairs, which are pairs of curves that

share the same tangent plane between two views. An

interesting and problem-specific pre-alignment

method was given in Sablatnig and Kampel (2002).

They presented a method that pre-aligns the front and

back views of rotationally symmetric objects, which

are archeological ceramic fragments, using 3D Hough

transformation. An identical voting scheme (Habib

and Schenk, 1999) based on the Hough technique was

used in order to find the initial approximations of the

unknown 3D similarity transformation parameters

between two overlapping airborne laser point clouds.
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This method can solve the transformation parameters

in parameter space without point correspondence. The

final registration is achieved using a similar method to

Chen and Medioni’s (1992) point-to-tangent plane

distance error minimization formula.

The well known approach for the multiple range

image registration is to sequentially apply pairwise

registration until all views are combined. Chen and

Medioni (1992) proposed a method, which registers

successive views incrementally with enough over-

lapping area. Each next view is registered and merged

with the metaview, which is the topological union of

the former pairwise registration. In Blais and Levine

(1995) couples of images were incrementally regis-

tered together with a final registration between the

first and last view. It is based on reversing the range

finder calibration process, resulting in a set of

equations, which can be used to directly compute

the location of a point in a range image corresponding

to an arbitrary point in three-dimensional space.

Another multi image registration method based on

inverse calibration, called Iterative Parametric Point

(IPP), was given in Jokinen and Haggren (1995). In

Bergevin et al. (1996) an algorithm, which considers

the network of views as a whole and minimizes the

registration errors of all views simultaneously, was

introduced. This leads to a well-balanced network of

views in which the registration errors are equally

distributed. Pulli (1999) first aligned the scans

pairwise and generated the virtual mates, which are

uniformly sub-samples of the overlapping areas. The

multiview alignment was performed incrementally

using the virtual mates. In Dorai et al. (1998) a

seamless integration method based on a weighted

averaging technique for the registered multiview

range data to form an unbroken surface was proposed.

In Eggert et al. (1998) a force based optimization

technique for simultaneous registration of multiview

range images was introduced. They report that the

final registration accuracy of their method typically

approaches less than 1 /4 of the interpoint sampling

resolution of the range image.

Williams and Bennamoun (2001) proposed a new

technique for the simultaneous registration of multiple

point sets. The global point registration technique

presented in this paper is a generalization of the well

known pairwise registration method of Arun et al.’s

(1987), which uses the Singular Value Decomposition
(SVD) to compute the optimal registration parameters

in the presence of point correspondences. This method

is a closed-form solution for the 3D rigid trans-

formation between two 3D point sets. It first reduces

the unknown translation parameters, shifting all points

to the center of gravity, and calculates the unknown

rotation matrix using the SVD of a 3�3 matrix, and

finally calculates the translation parameters. During

that time two other similar methods had been

developed independently based on unit quaternions

(Horn, 1987; Faugeras and Hebert, 1986), but as

pointed out by Horn et al. (1988) these methods were

not entirely novel, since the same problem had already

been treated in the Psychometry (Quantitative Psy-

chology) literature (Schoenemann, 1966; Schoene-

mann and Carroll, 1970) in the name of Procrustes

Analysis. An interesting note here is that the

mathematical background of SVD, introduced by

Eckart and Young (1936), comes from the Psychom-

etry area. It is also known as Eckart–Young Decom-

position. From a mathematical point of view a similar

method to Williams and Bennamoun’s (2001) pro-

posal was given in Beinat and Crosilla (2001). They

proposed the Generalized Procrustes Analysis as a

solution to the multiple range image registration

problem in the presence of point correspondences.

More details for the Procrustes Analysis can be found

in Crosilla and Beinat (2002). A further stochastic

model taking into account different a priori accuracies

of the tie point coordinate components was proposed

by Beinat and Crosilla (2002). In fact both of the

presented methods (Williams and Bennamoun, 2001;

Beinat and Crosilla, 2001) use Gauss–Seidel or Jacobi

type iteration techniques in order to register multiple

range images simultaneously. Photogrammetric block

adjustment by independent models has been proposed

as another solution (Scaioni and Forlani, 2003).

Masuda (2002) proposed a method to register

multiple range images using the signed distance field

(SDF), which is a scalar field determined by the

signed distance of an arbitrary 3D point from the

object surface. In Krsek et al. (2002) an automatic

hybrid registration algorithm was presented. It works

in a bottom-up hierarchical mode: points-differential

structures-surface. The final refinement of the estima-

tion is carried out using Iterative Closest Reciprocal

Point (ICRP) algorithm (Pajdla and Van Gool, 1995).

In Castellani et al. (2002) a multiple range image
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registration method was given for the 3D reconstruc-

tion of underwater environment from multiple acous-

tic range views acquired by a remotely operated

vehicle. In addition, several reviews and comparison

studies for the multiple range image registration are

available in the literature (Jokinen and Haggren, 1998;

Williams et al., 1999; Cunnington and Stoddart,

1999).

In Dijkman and van den Heuvel (2002) a semi-

automatic registration method based on least squares

fitting of the parameters of the models (cylinder and

plane) was introduced. The registration is performed

using the parameters of the models measured in

different scans. The Global Positioning System (GPS)

was also used to determine the 3D coordinates of the

homologous points, which were used to merge the

different scans (Balzani et al., 2002). Use of GPS

allows combining all scans in a common system even

if they do not have overlapping parts. To solve the

point correspondence problem between two laser

scanner point clouds before the 3D similarity trans-

formation, an automatic method was proposed based

on the assumption that the Z-axes of two scans are

vertical (Bornaz et al., 2002). In this work retro-

reflective targets, which are attached to the object

surface before the scanning process, are used as

common points. The idea is to search the homologous

points based on two spherical coordinates (range and

elevation). A similar automatic method has been given

in Akca (2003) using the template shaped targets. In

this work the space angles and the distances are used

to solve the point correspondence problem, since they

are translation and rotation invariant parameters

among the different laser scanner viewpoints. The

ambiguity problem, which is rare but theoretically and

practically possible, is solved using consistent label-

ing by discrete relaxation.

This fairly exhaustive description of related

research activities and achievements demonstrates

the relevance of the problem. We also notice that a

fully satisfying solution has still to be found,

implemented and tested (see some critical comments

at the beginning of Section 3).

2.2. Related work in terrain modeling

Since 3D point clouds derived by any method or

device represent the object surface, the problem
should be defined as a surface matching problem. In

photogrammetry, the problem statement of surface

patch matching and its solution method was first

addressed by Gruen (1985a) as a straight extension of

Least Squares Matching.

There have been some studies on the absolute

orientation of stereo models using Digital Elevation

Models (DEM) as control information. This work is

known as DEM matching. The absolute orientation

of the models using Digital Terrain Models (DTM)

as control information was first proposed by Ebner

and Mueller (1986), and Ebner and Strunz (1988).

Afterwards, the functional model of DEM matching

has been formulated by Rosenholm and Torlegard

(1988). This method basically estimates the 3D

similarity transformation parameters between two

DEM patches, minimizing the least square differ-

ences along the Z-axes. Several applications of DEM

matching have been reported (Karras and Petsa,

1993; Pilgrim, 1996; Mitchell and Chadwick, 1999;

Xu and Li, 2000).

Further studies have been carried out to incorporate

the DEMs into aerial block triangulation as control

information (Ebner et al., 1991; Ebner and Ohlhof,

1994; Jaw, 2000). Jaw (2000) integrated the surface

information into aerial triangulation by hypothesizing

plane observations in object space, with a goal

function that minimizes the distance along the surface

normal.

Maas (2000) successfully applied a similar method

to register airborne laser scanner strips, among which

vertical and horizontal discrepancies generally show

up due to GPS/INS accuracy problems. Another

similar method has been presented for registering

surfaces acquired using different techniques, in

particular, laser altimetry and photogrammetry (Post-

olov et al., 1999).

Furthermore, techniques for 2.5D DEM surface

matching have been developed, which correspond

mathematically to least squares image matching.

The DEM matching concept can only be applied to

2.5D surfaces, whose analytic function can be

described in the explicit form as a single valued

function, i.e., z= f(x,y). 2.5D surfaces are of limited

value in the case of generally formed objects. As a

result, the DEM matching method is not fully able

to solve the correspondence problem of solid 3D

surfaces.
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2.3. Review of previous work on curve matching

Objects in the scene can also be delineated by use

of space curves instead of surfaces. In many cases

the space curves carry valuable information related

to the dimension and shape of the object. They can

represent boundaries of regions, ridgelines, silhou-

ettes, etc.

Matching of 2D curves is a very active research

area in Computer Vision. Several algorithms, which

are not explained here in detail, have been proposed

in the literature. The contour matching is frequently

used as another name for the same problem state-

ment. In spite of presence of much work on curve/

contour/line segment/arc matching in 2D space, only

few works have been done on the problem of 3D

curve matching.

As far as the current methods in Computer

Vision literature are concerned, the problem has

mostly been defined as that of matching of 1D

feature strings, obtained from higher degree regres-

sion splines. The general attempt is to use some

derived features (differential invariants, semi-differ-

ential invariants, Fourier descriptors, etc.) instead

of the whole data directly (Schwartz and Sharir,

1987; Parsi et al., 1991; Kishon et al., 1991;

Gueziec and Ayache, 1994; Cohen and Wang,

1994; Wang and Cohen, 1994; Pajdla and Van

Gool, 1995).

Actually the ICP was proposed to solve the curve

matching problem as well in both 2D and 3D space, as

explained in its original publications (Besl and

McKay, 1992; Zhang, 1994). Lavallee et al. (1991)

presented a method that matches 3D anatomical

surfaces acquired by MRI (Magnetic Resonance

Imaging) or CT (Computed Tomography) to their

2D X-ray projections.

In photogrammetry, the problem statement was

first touched by Gruen (1985a): b. . . It may even be

utilized to match and analyse non-sensor data sets,

such as digital height models, digital planimetric

models and line map informationQ. The LSM has

been addressed as the solution, but not developed

yet.

Much work has been done on the matching of line

segments in image space using feature-based match-

ing or relational matching considering the sensor

geometry, auxiliary information, etc., using tree-
search or relaxation techniques. Most of the work in

this context focuses on automatic extraction of

buildings and/or roads from aerial images.

Forkert et al. (1995) gave a method that recon-

structs free-formed spatial curves represented in

cubic spline form. The curve is adjusted to the

bundles of rays coming from two or more images.

Zalmanson and Schenk (2001) used 3D free-form

curves for indirect orientation of pushbroom sensors.

They addressed the advantage of using these features

for providing continuous control information in

object space. Although the last two references are

not directly related to 3D curve matching, they give

some examples on the utilization of 3D curves in

photogrammetry.

An innovative work was introduced in Gruen and

Li (1996) with the LSB-Snakes (Least Squares B-

spline Snakes). The method of active contour models

(Snakes) was formulated in a least squares approach

and at the same time the technique of least squares

template matching was extended by using a deform-

able contour instead of a rectangle as the template.

This elegant method considerably improves the

active contour models by using three new elements:

(1) the exploitation of any a priori known geometric

and photometric information to constrain the sol-

ution, (2) the simultaneous use of any number of

images, and (3) the solid background of least squares

estimation. Through the connection of image and

object space, assuming that the interior and exterior

orientation of the sensors are known, any number of

images can be simultaneously accommodated and the

feature can be extracted in a 2D as well as in a fully

3D mode.
3. Our proposed method

Although the registration of 3D point clouds is a

very active research area in many disciplines, there is

still the need for a contribution that responds

favourably to the following four properties: matching

of non-rigidly deformed data sets, matching of full 3D

surfaces (as opposed to 2.5D), fitting of the mathe-

matical model to the physical reality of the problem

statement as well as possible, and mechanisms for

internal quality control. Our proposed method meets

these requirements.



A. Gruen, D. Akca / ISPRS Journal of Photogrammetry & Remote Sensing 59 (2005) 151–174 157
The Least Squares Matching concept had been

developed in parallel by Gruen (1984, 1985a),

Ackermann (1984) and Pertl (1984). It has been

applied to many different types of measurement and

feature extraction problems due to its high level of

flexibility and its powerful mathematical model:

Adaptive Least Squares Image Matching (Gruen,

1984, 1985a), Geometrically Constrained Multiphoto

Matching (Gruen and Baltsavias, 1988), Image Edge

Matching (Gruen and Stallmann, 1991), Multiple

Patch Matching with 2D images (Gruen, 1985b),

Multiple Cuboid (voxel) Matching with 3D images

(Maas, 1994; Maas and Gruen, 1995), Globally

Enforced Least Squares Template Matching (Gruen

and Agouris, 1994), Least Squares B-spline (LSB)

Snakes (Gruen and Li, 1996). For a detailed survey

the authors refer to Gruen (1996). If 3D point clouds

derived by any device or method represent an object

surface, the problem should be defined as a surface

matching problem instead of the 3D point cloud

matching. In particular, we treat it as Least Squares

Matching of overlapping 3D surfaces, which are

digitized/sampled point by point using a laser scanner

device, the photogrammetric method or other surface

measurement techniques. This definition allows us to

find a more general solution for the problem as well as

to establish a flexible mathematical model in the

context of LSM.

Our mathematical model is a generalization of the

Least Squares (LS) image matching, in particular the

method given by Gruen (1984, 1985a). The LS image

matching estimates the location of a synthetic or

natural template image patch on a search image patch,

modifying the search patch by an affine transforma-

tion, minimizing the sum of squares of the grey level

differences between the image patches. Geometric and

radiometric image deformations are simultaneously

modeled via image shaping parameters and radio-

metric corrections. In the LS cuboid matching (Maas,

1994; Maas and Gruen, 1995) a straightforward

extension to 3D voxel space working with volume

data rather than image data was given. The LS surface

matching conceptually stands between these two

approaches.

The proposed method, Least Squares 3D Surface

Matching (LS3D), matches one or more 3D search

surfaces to a 3D template surface, minimizing the

sum of squares of the Euclidean distances between
the surfaces. This formulation gives the opportunity

of matching arbitrarily oriented 3D surface patches.

An observation equation is written for each element

on the template surface patch, i.e. for each sampled

point. The constant term of the adjustment is given

by the observation vector whose elements are the

Euclidean distances between the template and

search surface elements. The geometric relationship

between the conjugate surface patches is defined as

a 7-parameter 3D similarity transformation. This

parameter space can be extended or reduced, as the

situation demands it. The unknown transformation

parameters are treated as stochastic quantities using

proper a priori weights. This extension of the

mathematical model gives control over the estima-

tion parameters. For the estimation of the parame-

ters the Generalized Gauss–Markoff model of least

squares is used. Since the estimation model provides

the mechanisms for internal quality control, the

localization and elimination of the gross erroneous

and occluded surface subparts during the iteration is

possible.
4. Least squares 3D surface matching (LS3D)

4.1. The basic estimation model

Assume that two different partial surfaces of the

same object are digitized/sampled point by point, at

different times (temporally) or from different view-

points (spatially). Although the conventional sam-

pling pattern is point based, any other type of

sampling pattern is also accepted. f(x,y,z) and

g(x,y,z) are conjugate regions of the object in the

left and right surfaces respectively. In other words

f(x,y,z) and g(x,y,z) are discrete 3D representations of

the template and search surfaces. The problem state-

ment is estimating the final location, orientation and

shape of the search surface g(x,y,z), which satisfies

the minimum condition of Least Squares Matching

with respect to the template f(x,y,z). The functional

model is

f x; y; zð Þ ¼ g x; y; zð Þ: ð1Þ

According to Eq. (1) each surface element on the

template surface patch f(x,y,z) has an exact corre-

spondent surface element on the search surface
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g(x,y,z), or vice-versa, if both of the surfaces would

analytically be continuous surfaces without any

deterministic or stochastic discrepancies. In order to

model the stochastic discrepancies, which are

assumed to be random errors, and may stem from

the sensor, environmental conditions or measurement

method, a true error vector e(x,y,z) is added as:

f x; y; zð Þ � e x; y; zð Þ ¼ g x; y; zð Þ: ð2Þ

Eq. (2) are observation equations, which function-

ally relate the observations f(x,y,z) to the parameters

of g(x,y,z). The matching is achieved by least

squares minimization of a goal function, which

represents the sum of squares of the Euclidean

distances between the template and the search

surface elements:

X
tdYt2 ¼ min ð3Þ

and in Gauss form

dd½ � ¼ min ð4Þ

where d
Y
stands for the Euclidean distance. The final

location is estimated with respect to an initial

position of g(x ,y,z), the approximation of the

conjugate search surface g0(x,y,z).

To express the geometric relationship between the

conjugate surface patches, a 7-parameter 3D similarity

transformation is used:

x y z½ �T ¼ t þ mRx0 ð5Þ

x

y

z

2
4

3
5 ¼

tx
ty
tz

2
4

3
5þ m

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 x0

y0
z0

2
4

3
5 ð6Þ

where rij =R(x,u,j) are the elements of the orthog-

onal rotation matrix, [tx ty tz]
T is the translation vector,

and m is the uniform scale factor.

Depending on the deformation between the tem-

plate and the search surfaces, any other type of 3D

transformations could be used, e.g., 12-parameter

affine, 24-parameter tri-linear, or 30-parameter quad-

ratic family of transformations.
In order to perform least squares estimation, Eq. (2)

must be linearized by Taylor expansion, ignoring 2nd

and higher order terms.

f x; y; zð Þ� e x; y; zð Þ

¼ g0 x; y; zð Þ þ Bg0 x; y; zð Þ
Bx

dx

þ Bg0 x; y; zð Þ
By

dyþ Bg0 x; y; zð Þ
Bz

dz ð7Þ

with

dx ¼ Bx

Bpi
dpi ; dy ¼ By

Bpi
dpi ; dz ¼ Bz

Bpi
dpi

ð8Þ

where pia{tx,ty,tz,m,x,u,j} is the i-th transforma-

tion parameter in Eq. (6). Differentiation of Eq. (6)

gives:

dx ¼ dtx þ a10dmþ a11dx þ a12du þ a13dj

dy ¼ dty þ a20dmþ a21dx þ a22du þ a23dj

dz ¼ dtz þ a30dmþ a31dx þ a32du þ a33dj ð9Þ

where aij are the coefficient terms, whose expansions

are trivial. Using the following notation

gx ¼
Bg0 x; y; zð Þ

Bx
; gy ¼

Bg0 x; y; zð Þ
By

;

gz ¼
Bg0 x; y; zð Þ

Bz
ð10Þ

and substituting Eq. (9), Eq. (7) results in the

following:

� e x; y; zð Þ ¼ gxdtx þ gydty þ gzdtz

þ gxa10 þ gya20 þ gza30
� �

dm

þ gxa11 þ gya21 þ gza31
� �

dx

þ gxa12 þ gya22 þ gza32
� �

du

þ gxa13 þ gya23 þ gza33
� �

dj

� f x; y; zð Þ � g0 x; y; zð Þ
� �

: ð11Þ

In the context of the Gauss–Markoff model, each

observation is related to a linear combination of the

parameters, which are variables of a deterministic
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unknown function. This function constitutes the

functional model of the whole mathematical model.

The terms {gx, gy, gz} are numeric 1st derivatives of

this function g(x,y,z).

Eq. (11) gives in matrix notation

� e ¼ Ax� l ; P ð12Þ

where A is the design matrix, xT=[dtx dty dtz
dm dx du dj] is the parameter vector, and

l = f(x,y,z)�g0(x,y,z) is the constant vector that con-

sists of the Euclidean distances between the template

and correspondent search surface elements. In our

implementation the template surface elements are

approximated by the data points. On the other hand,

the search surface elements are represented by user

selection of one of the two different types of piecewise

surface forms (planar and bi-linear), as it will be

explained in Section 4.2. In general, both surfaces

(template and search) can be represented in any kind

of piecewise form.

With the statistical expectation operator E{} and

the assumptions

efN 0; r2
0Qll

� �
; r2

0Qll ¼ r2
0P

�1
ll ¼ Kll ¼ E eeT

� 	
ð13Þ

the system (12) and (13) is a Gauss–Markoff

estimation model. Qll, P=Pll and Kll stand for a

priori cofactor, weight and covariance matrices

respectively.

The unknown transformation parameters are treated

as stochastic quantities using proper weights. This

extension gives advantages of control over the estimat-

ing parameters (Gruen, 1986). In the case of poor initial

approximations for unknowns or badly distributed 3D

points along the principal component axes of the

surface, some of the unknowns, especially the scale

factorm, may converge to a wrong solution, even if the

scale factors between the surface patches are same.

We introduce the additional observation equations

regarding the system parameters as

� eb ¼ Ix� lb ; Pb ð14Þ

where I is the identity matrix, lb is the (fictitious)

observation vector for the system parameters, and Pb

is the associated weight coefficient matrix. The weight

matrix Pb has to be chosen appropriately, considering
a priori information of the parameters. An infinite

weight value ((Pb)iiYl) excludes the i-th parameter

from the system assigning it as constant, whereas zero

weight ((Pb)ii =0) allows the i-th parameter to vary

freely assigning it as unknown parameter in the

classical meaning.

The least squares solution of the joint system Eqs.

(12) and (14) gives as the Generalized Gauss–Markoff

model the unbiased minimum variance estimation for

the parameters

x̂x ¼ ATPAþ Pb

� ��1
ATPl þ Pblb
� �

solution vector (15)

r̂r2
0 ¼

vTPvþ vTbPbvb

r
variance factor (16)

v ¼ Ax̂x � l residual vector for surface observations (17)

vb ¼ Ix̂x � lb residual vector for parameter observations (18)

where ˆ stands for the Least Squares Estimator,
r =n�u is the redundancy, n is the number of
observations that is equivalent to the number of

elements of the template surface, and u is the number

of transformation parameters that is seven here. When

the system converges, the solution vector converges to

zero (x̂Y0). Then the residuals of the surface

observations vi become the final Euclidean distances

between the estimated search surface and the template

surface patches.

vi ¼ ĝg x; y; zð Þi � f x; y; zð Þi ; i ¼ 1; . . . ; nf g: ð19Þ

The function values g(x,y,z) in Eq. (2) are actually

stochastic quantities. This fact is neglected here to

allow for the use of the Gauss–Markoff model and to

avoid unnecessary complications, as typically done in

LSM (Gruen, 1985a). This assumption is valid and the

omissions are not significant as long as the random

errors of the template and search surfaces are normally

distributed and uncorrelated. In the extreme case when

the random errors of both surfaces show systematic

and dependency patterns, which is most probably

caused by defect or imperfectness of the measurement

technique or the sensor, it should be an interesting

study to investigate the error behaviour using the Total

Least Squares (TLS) method (Golub and Van Loan,
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1980). The TLS is a relatively new adjustment method

of estimating parameters in linear models that include

errors in all variables (Schaffrin and Felus, 2003).

The functional model is non-linear. The solution

iteratively approaches a global minimum. With the

solution of linearized functional models there is

always a danger to find local minima. A global

minimum can only be guaranteed if the function is

expanded to Taylor series at such a point where the

approximate values of the parameters are close

enough to their true values ( pi
0gpiaR

u; i =1,. . .,u)

in parameter space. We ensure this condition by

providing of good quality initial approximations for

the parameters in the first iteration:

p0ia t0x ; t
0
y ; t

0
z ;m

0;x0u0; j0
n o

: ð20Þ

After the solution vector (15) has been solved for,

the search surface is deformed to a new state using the

updated set of transformation parameters, and the

design matrix A and the constant vector l are re-

evaluated. The iteration stops if each element of the

alteration vector x̂ in Eq. (15) falls below a certain

limit:

jdpijbci ; dpia dtx; dty; dtz; dm; dx; du; dj
� 	

ð21Þ

where i ¼ 1; 2; . . . ; 7f g:
Adopting the parameters as stochastic variables

allows adapting the dimension of the parameter space

in a problem-specific manner. In the case of insufficient

a priori information on the geometric deformation

characteristics of the template and search surfaces, the

adjustment could be started employing a high order

transformation, e.g. 3D affine. However, this approach

very often leads to an over-parameterization problem.

Therefore, during the iterations an appropriate test

procedure that is capable to exclude non-determinable

parameters from the system should be performed. For a

suitable testing strategy we refer to Gruen (1985c).

4.2. Implementation issues

The terms { gx, gy, gz} are numeric 1st derivatives

of the unknown surface g(x,y,z). Their calculation

depends on the analytical representation of the surface

elements. As a first method, let us represent the search
surface elements as planar surface patches, which are

constituted by fitting a plane to 3 neighboring knot

points, in the non-parametric implicit form

g0 x; y; zð Þ ¼ Axþ Byþ Czþ D ¼ 0 ð22Þ
where A, B, C, and D are the parameters of the plane.

The numeric 1st derivation according to the x-axis is

gx ¼
Bg0 x; y; zð Þ

Bx
¼ lim

DxY0

g0 xþ Dx; y; zð Þ � g0 x; y; zð Þ
Dx

ð23Þ
where the numerator term of the equation is simply

the distance between the plane and the off-plane point

(x +Dx,y,z). Then using the point-to-plane distance

formula,

gx ¼
A xþ Dxð Þ þ Byþ Czþ D

Dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p

ð24Þ

is obtained. Similarly gy and gz are calculated

numerically:

gy ¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2 þ C2
p ; gz ¼

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p :

ð25Þ
Actually these numeric derivative values {gx, gy, gz}

are x–y–z components of the local surface normal vector nY

at that point:

nY ¼
gx

gy

gz

2
64

3
75 ¼ j

Y
g0

tjYg0t

¼

Bg0 x; y; zð Þ
Bx

Bg0 x; y; zð Þ
By

Bg0 x; y; zð Þ
Bz

� �T

tjYg0t

¼ A B C½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p : ð26Þ

For the representation of the search surface ele-

ments as parametric bi-linear surface patches, a bi-

linear surface is fitted to 4 neighboring knot points Pi:

gY
0
u;wð Þ ¼ x u;wð Þ y u;wð Þ z u;wð Þ½ �T ð27Þ

gY
0
u;wð Þ ¼ P

Y
1 1� uð Þ 1� wð Þ þ P

Y
2 1� uð Þw

þ P
Y

3u 1� wð Þ þ P
Y

4uw ð28Þ
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where u,w a [0,1]
2 and gY

0
u;wð Þ;PYiaR

3. The vector

gY
0
u;wð Þ is the position vector of any point on the bi-

linear surface that is bounded by 4 knot points Pi.

Again the numeric derivative terms {gx, gy, gz} are

calculated from components of the local surface

normal vector nY on the parametric bi-linear surface

patch:

nY ¼
gx

gy

gz

2
64

3
75 ¼ jYg0

tjYg0t
¼

Bg
Y0

u;wð Þ
Bu

� Bg
Y0

u;wð Þ
Bw

tjYg0t

ð29Þ
where � stands for the vector cross product. With this

approach a slightly better a posteriori r0-value could

be obtained due to better surface modeling.

Conceptually derivative terms { gx, gy, gz}

constitute a normal vector field with unit magnitude

tnYt ¼ 1 on the search surface. This vector field slides

over the template surface towards the final solution,

minimizing the Least Squares objective function.

4.3. Precision and reliability

The standard deviations of the estimated trans-

formation parameters and the correlations between

themselves may give useful information concerning

the stability of the system and the quality of the data

content (Gruen, 1985a):

r̂rp ¼ r̂r0
ffiffiffiffiffiffi
qpp

p
; qppaQxx ¼ ATPAþ Pb

� ��1

ð30Þ
where Qxx is the cofactor matrix for the estimated

parameters. As pointed out in Maas (2000), the
1 2 13 4 5

0

-100
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tz

ω

κ

ϕ

tx
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tz

ω

κ

ϕ

tx

(a)dpi /ci

Fig. 1. Typical examples for fast convergence (a) and slow converg
estimated standard deviations of the transformation

parameters are usually too optimistic due to the

stochastic properties of the search surface, which are

not taken into consideration.

In order to localize and eliminate the occluded

parts and the outliers a simple weighting scheme

adapted from the Robust Estimation Methods is used:

Pð Þii ¼
1 if j vð ÞijbKr0

0 else
:

�
ð31Þ

In our experiments K is selected as N10, since it is

aimed to suppress only the large outliers. Because of

the high redundancy of a typical data arrangement, a

certain amount of occlusions and/or smaller outliers

do not have significant effect on the estimated

parameters. As a comprehensive strategy, the data-

snooping method of Baarda (1968) can be favourably

used to localize the occluded or gross erroneous

measurements.

4.4. Convergence of solution vector

In a standard least squares adjustment calculus, the

function of the unknowns is unique, exactly known,

and analytically continuous everywhere. Here the

function g(x,y,z) is discretized by using a finite

sampling rate, which leads to slow convergence,

oscillations, even divergence in some cases with

respect to the standard adjustment. The convergence

behaviour of the proposed method basically depends

on the quality of the initial approximations and quality

of the data content. For a good data configuration it

usually achieves the solution after 5 or 6 iterations

(Fig. 1), which is typical for LSM. To stop the
2

ty iterations

3 4 5 6 7 8

(b)

ence (b). Note that here the scale factor m is fixed to unity.
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iteration we select ci criteria as 1.0e�5, 1.0e�4 (in

given unit), and 1.0e�3 (grad) for the scale factor,

translations and rotation angles respectively.

4.5. Computational aspects

The computational effort increases with the num-

ber of points in the matching process. The main

portion of the computational complexity is to search

the correspondent elements of the template surface

patch on the search surface, whereas the adjustment

part is a small system, and can quickly be solved

using Cholesky decomposition followed by back-

substitution. Searching the correspondence is an

algorithmic problem, and needs professional software

optimization techniques and programming skills,

which are not within the scope of this paper.

In the case of insufficient initial approximations,

the numerical derivatives { gx, gy, gz} can also be

calculated on the template surface patch f(x,y,z)

instead of on the search surface g(x,y,z) in order to

speed-up the convergence. This speed-up version

apparently decreases the computational effort of the

design matrix A as well, since the derivative terms

{ fx, fy, fz} are calculated only once in the first

iteration, and the same values are used in the

following iterations. As opposed to the basic model,

the number of the observation equations contributing

to the design matrix A is here defined by the number

of elements on the search surface patch g(x,y,z).

Two 1st degree C0 continuous surface representa-

tions are implemented. In the case of multi-resolution

data sets, in which point densities are significantly

different on the template and search surfaces, higher

degree C1 continuous composite surface representa-

tions, e.g. bi-cubic Hermit surface (Peters, 1974),

should give better results, of course increasing the

computational expenses.

4.6. Pros and cons of LS3D compared to some other

methods

The ICP algorithm always converges monotoni-

cally to a local minimum with respect to the mean-

square distance objective function (Besl and McKay,

1992). The estimation of the 6-parameters of the rigid

transformation is a linear least squares solution,

whereas the overall procedure is iterative. In the ICP
and its variants the goal function, which minimizes

the Euclidean distances between two point clouds by

least squares, is achieved indirectly by estimating and

applying the rigid transformations consecutively. Our

mathematical model is substantially different from the

ICP and its variants, since it directly formulates the

goal function in a Generalized Gauss–Markoff model.

The selected 3D transformation model (Eqs. 6 and 8)

only relates the surfaces geometrically. The ICP needs

a relatively high number of iterations (see for example

Pottmann et al., 2004), while LS3D usually needs 5–8

iterations, depending also on the quality of the

approximations. On the other hand, LS3D needs quite

good approximations (i.e. has small convergence

radius), while with ICP the requirements on the

quality of the approximations are less.

In Neugebauer (1997) and Szeliski and Lavallee

(1996) two gradient descent type of algorithms were

given. They calculate the Euclidean distances as

evaluation function value by interpolation using

point-to-projection and octree spline methods respec-

tively. They adopt the Levenberg–Marquardt method,

in which diagonal elements of the normal matrix N are

augmented by a damping matrix D in order to prevent

numerical problems: (N+kD)d=n where k N0 is the

stabilization factor that varies during the iterations.

The damping matrix D is often chosen as an identity

matrix I or a diagonal matrix containing the diagonal

elements of the normal matrix (diag(N)). The Gener-

alized Gauss–Markoff model might be seen as

identical to the Levenberg–Marquardt, as the weight

matrix Pb has a damping effect on the normal matrix.

But it is a thorough statistical approach considering

the a priori stochastic information (Eq. 14), and a

straightforward result of the least squares formulation

(Eq. 15). The Levenberg–Marquardt method is rather

a numerical approach with no direct stochastical

justification.

Assume that two planes are the subject of the

matching process. During the solution of a standard

least squares adjustment, the normal matrix becomes

singular, since there is not a unique solution geo-

metrically. This numerical reflex issues a warning to

the user. On the other hand Levenberg–Marquardt will

give one of the solutions out of the infinite number.

Geometrically ill configured data sets are reasons for

the near-singularity cases. When singularity or ill

conditioning occurs, one must carefully inspect the
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Fig. 2. Matching of free-form space curves.
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system and diagnose the data, instead of doing

numerical manipulations.

4.7. An extension: simultaneous multi-subpatch

matching

The basic estimation model can be implemented in

a multi-patch mode, that is the simultaneous matching

of two or more search surfaces gi(x,y,z), i=1,. . .,k, to
one template surface f(x,y,z).

� e1 ¼ A1x1 � l1 ; P1

� e2 ¼ A2x2 � l2 ; P2

v v

� ek ¼ Akxk � lk ; Pk : ð32Þ

Since the parameter vectors x1,. . ., xk do not have

any joint components, the sub-systems of Eq. (32) are

orthogonal to each other. In the presence of auxiliary

information those sets of equations could be con-

nected via functional constraints, e.g. as in the Geo-

metrically Constrained Multiphoto Matching (Gruen,

1985a; Gruen and Baltsavias, 1988) or via appropriate

formulation of multiple (N2) overlap conditions.

An ordinary point cloud includes a large amount of

redundant information. A straightforward way to

register such two point clouds could be matching of

the whole overlapping areas. This is computationally

expensive. We propose multi-subpatch mode as a

further extension to the basic model, which is capable

of simultaneous matching of sub-surface patches,

which are selected in cooperative surface areas. This

leads to the observation equations

� e1 ¼ A1x� l1 ; P1

� e2 ¼ A2x� l2 ; P2

v v

� ek ¼ Akx� lk ; Pk ð33Þ

with i=1,. . .,k subpatches.

They can be combined as in Eq. (12), since the

common parameter vector x joints them to each other.
The individual subpatches may not include sufficient

information for the matching of whole surfaces, but

together they provide a computationally effective

solution, since they consist only of relevant informa-

tion rather than using the full data set. One must

carefully select the distribution and size of the

subpatches in order to get a homogeneous quality of

the transformation parameters in all directions of the

3D space. For an example of multi-subpatch matching

see project Wangen-façade of Section 6.5.
5. Least squares 3D curve matching

5.1. The mathematical modelling in cubic spline form

Assume that two 3D curves of the same object are

either directly measured by use of a contact measure-

ment device, photogrammetric method, etc. or derived

using any other technique. They can be matched in 3D

space, since they represent the same object (Fig. 2).

The curves may have been measured or extracted in a

point by point fashion, but can also be in different

sampling patterns. The problem statement is finding

the corresponding part of the template curve f(x,y,z)

on the search curve g(x,y,z). The analytical represen-

tation of the curves is carried out in cubic spline form,

but any other piecewise representation scheme can

also be considered.

In general, a parametric space curve is expressed,

e.g. for the template curve, as:

f uð Þ ¼ x uð Þ y uð Þ z uð Þ½ �T ð34Þ

where u a [0,1] and f(u) aR
3 is the position vector of

any point on the curve. It has three components x(u),
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y(u), and z(u) which may be considered as the

Cartesian coordinates of the position vector (Rogers

and Adams, 1976).

In the cubic spline representation

f uð Þ ¼
X4
i¼1

Biu
i�1 ¼ B1 þ B2uþ B3u

2 þ B4u
3

ð35Þ

the coefficient vectors Bi a R
3 are determined by

specifying the boundary conditions for the spline

segments. The expanded form shows a 4th order 3rd

degree analytical definition. A cubic degree ensures

the second-order continuity (C2). This implies that the

first (slope) and second (curvature) order derivatives

are continuous across the joints of the composite

curve. Similar expressions are also valid for the search

curve:

g uð Þ ¼ D1 þ D2uþ D3u
2 þ D4u

3: ð36Þ

Using the parametric 3D space curve definition the

observation equations are formulated in the same

manner as explained in Section 4:

f uð Þ � e uð Þ ¼ g uð Þ: ð37Þ

Considering the same assumptions, which have

been made in the previous part, with respect to the

stochastic model, the geometric relationship between

the template and search curves, and the Taylor

expansion, the linearized functional model evolves as:

f uð Þ � e uð Þ ¼ g0 uð Þ þ Bg0 uð Þ
Bu

du ð38Þ

f uð Þ�e uð Þ ¼ g0 uð Þþ Bg0 uð Þ
Bu

Bu

Bx
dxþ Bg0 uð Þ

Bu

Bu

By
dy

þ Bg0 uð Þ
Bu

Bu

Bz
dz: ð39Þ

The relations between the Cartesian coordinate

domains of the template and search curves are

established via a 7-parameter 3D similarity trans-

formation, where it is also possible to extend or

reduce the parameter space of the 3D transformation

upon necessity.
The differentiation of the transformation equations

results in:

dx ¼ Bx

Bpi
dpi ; dy ¼ By

Bpi
dpi ; dz ¼ Bz

Bpi
dpi

ð40Þ

where pia{tx,ty,tz,m,x,u,j} is the i-th transforma-

tion parameter in Eq. (6).

The expression below

Bg0 uð Þ
Bu

¼ Bg0 uð Þ
Bu

Bu

Bx

Bg0 uð Þ
Bu

Bu

By

Bg0 uð Þ
Bu

Bu

Bz

� �T

¼ gx gy gz½ �T ð41Þ

describes the numeric derivative terms. After further

expansions, in the same manner as in the previous

section, considering the parameters of the 3D trans-

formation as fictitious observations, using an appro-

priate stochastic model, and with the assumptions

E{e}=0 and E{eeT}= j0
2P�1 the system can be

formulated as a Generalized Gauss–Markoff model:

� e ¼ Ax� l ; P ð42Þ

� eb ¼ Ix� lb ; Pb: ð43Þ

The least squares solution of the joint system Eqs.

(42) and (43) gives the unbiased minimum variance

estimation for the parameters:

x̂x ¼ ATPAþ Pb

� ��1
ATPl þ Pblb
� �

solution vector (44)

r̂r2
0 ¼

vTPvþ vTbPbvb

r
variance factor (45)

v ¼ Ax̂x � l residual vector for surface observations (46)

vb ¼ Ix̂x � lb residual vector for parameter observations (47)

The functional model is non-linear, and the

solution is iterative. The iteration stops if each
element of the alteration vector x̂ in Eq. (44) falls

below a certain limit.
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Let us assume that the first three derivatives do

exist and are linearly independent for a point g(u) on a

parametric curve (Fig. 3). Then the first three

derivatives gV(u), gW(u), and gj(u) form a local affine

coordinate system with origin g(u).

From this local affine system, one can easily obtain

a local Cartesian system with origin g(u) and axes

t
Y;nY;b

Y
by the Gram–Schmidt process of orthonormal-

ization (Farin, 1997):

t
Y¼ g

YV

tgYVt
; b

Y ¼ g
YV� g

YW

tgYV� gYWt
; nY ¼ b

Y � t
Y
:

ð48Þ

The vectors t
Y;nY;b

Y
are called tangent, (main)

normal, and bi-normal vectors respectively. The

frame t
Y;nY;b

Y
is called moving trihedron or Frenet

frame. It varies its orientation as u traces out the

curve (Farin, 1997).

Considering this definition, the numeric 1st order

derivative terms { gx, gy, gz} are the elements of the

unit-length normal vector n
Y

at point g0(u).

gx gy gz½ �T ¼ n
Y ð49Þ

Using the proper degree and basis for curve

representation, our method can handle multi-resolu-

tion and multi-sensor data sets, including multi-scale

curves. It can be straightforwardly re-formulated in

2D for the matching of free-form image features.

5.2. Matching of 3D curves with a 3D surface

The same formulation allows matching of one or

more 3D curve(s) with a 3D surface simultaneously

(Fig. 4). The problem is finding the correspondence of

a 1D geometric definition (curve) on a 2D geometric
g(u)

g'''

''

'

g

g

u n

b

g(u)
t

u

Fig. 3. Local affine system (left) and Frenet frame (right) (adapted

after Farin, 1997).
definition (surface), where both of them are para-

metrically represented in 3D space.
6. Experimental results

Five practical examples are given to show the

capabilities of the method. All experiments were

carried out using own self-developed C/C+ software

that runs on Microsoft WindowsR OS. Processing

times given in Table 1 were counted on a PC, whose

configuration is IntelR P4 2.53 GHz CPU, 1 GB RAM.

In all experiments (except the example bfaceQ in

Section 6.1) the initial approximations of the

unknowns were provided by interactively selecting 3

common points on both surfaces before matching.

Since in all data sets there was no scale difference, the

scale factor m was fixed to unity by infinite weight

value ((Pb)iiYl). The iteration criteria values were

selected as 0.1 mm (except 0.01 mm in the example

bfaceQ in Section 6.1) for the elements of the trans-

lation vector (dtx, dty, dtz) and 10cc for the rotation

angles dN, dB, dn.

6.1. Face measurement

The first example is the registration of three surface

patches, which were photogrammetrically measured

3D point clouds of a human face from multi-images

(Fig. 5). For the mathematical and implementation

details of this automatic surface measurement method

we refer to D’Apuzzo (2002).

Left and right surface patches (Fig. 5a and c) were

matched to the center surface patch (Fig. 5b) by use of

LS3D. Since the data set already came in a common



Table 1

Experimental results of projects face, Wangen-relief, The Virgin Mary, Neuschwanstein

Data set Surface

mode

No. points Iterations Time

(sec)

~point spacing

(mm)

r̂0

(mm)

r̂tx / r̂ty / r̂tz

(mm)

r̂x / r̂u / r̂j

(1.0e�02 grad)

I-L P 2497 7 0.6 1.5 0.19 0.15 /0.07 /0.05 0.96 /2.44 /1.90

B 7 1.3 0.19 0.15 /0.07 /0.05 0.96 /2.42 /1.91

I-R P 3285 6 0.5 1.5 0.21 0.13 /0.03 /0.05 0.68 /2.25 /1.73

B 6 1.4 0.21 0.13 /0.03 /0.05 0.69 /2.26 /1.75

II P 31,520 10 6.4 10 2.45 0.22 /0.16 /0.07 0.24 /0.27 /0.48

B 9 15.8 2.46 0.22 /0.16 /0.07 0.25 /0.27 /0.53

III P 61,885 10 15.5 5a 2.12 0.07 /0.11 /0.08 0.44 /0.15 /0.50

B 10 25.7 2.07 0.07 /0.11 /0.08 0.43 /0.15 /0.48

IV-L P 379,121 12 294.5 9 2.20 0.01 /0.02 /0.02 0.06 /0.04 /0.03

B 11 438.8 2.19 0.01 /0.02 /0.02 0.06 /0.04 /0.03

IV-R P 54,469 10 17.6 6 1.71 0.04 /0.02 /0.04 0.06 /0.05 /0.06

B 9 23.7 1.73 0.04 /0.02 /0.04 0.06 /0.05 /0.06

I: Face (L) left and (R) right, II: Wangen-relief, III: The Virgin Mary, IV: Neuschwanstein (L) left and (R) right.

P: Plane surface representation, B: bi-linear surface representation.
a Point density on the template surface.
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coordinate system, the rotation angles (x,u,j) were
deteriorated by ~10g prior to the first iteration.

Numerical results of the matching of the left surface

and the right surface patches are given in parts I-L

and I-R of Table 1. Relatively high standard devia-

tions for the estimated tx and u (note that a high

physical correlation between tx and u due to axes

configuration occurs) are due to the narrow over-

lapping area along the x-axis. Nevertheless, the

matching result is good. The estimated r0 values

prove the accuracy potential of the surface measure-

ment method, given as 0.2 mm by D’Apuzzo (2002).

Since LS3D reveals the sensor noise level and

accuracy potential of any kind of surface measure-
(a) (b) (c)

Fig. 5. Example bfaceQ. (a) Left-search surface, (b) center-template surfac

surface matching, (e) shaded view of the final composite surface.
ment method or device, it can also be used for

comparison and validation studies.

6.2. Matching of a bas-relief

The second experiment refers to the matching of

two overlapping 3D point clouds (Fig. 6), which repre-

sent a bas-relief on the wall of a chapel in Wangen,

Germany. They were scanned using the IMAGER

5003 terrestrial laser scanner (Zoller+Frfhlich, Ger-
many). Obtained results are given in part II of Table 1.

In the depth direction matching can be easily

achieved, but in the lateral direction it is problematic

due to weak surface roughness, which is around 3–4
(d) (e)

e, (c) right-search surface, (d) obtained 3D point cloud after LS3D
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Fig. 6. Example bWangen-reliefQ. (a) Template surface, (b) search surface, (c) intensity image of the bas-relief, (d) final composite of the

template and search surfaces after the LS3D matching method, (e) colored residuals between the fixed and transformed surfaces after the ICP

method and (f) the LS3D surface matching method, (g) the residual bar in millimeter unit.

(a) (b) (c) (d) (e) (f)

0.004

0.003

0.001

-0.001

-0.003

-0.004

Fig. 7. Example bThe Virgin MaryQ. (a) Intensity image of the object, (b) template surface, (c) search surface, (d) colored residuals between the

fixed and transformed surfaces after the ICP method and (f) the LS3D surface matching method, (e) the residual bar in millimeter unit.
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cm. In spite of this difficult data configuration the

matching is successful. Relatively low theoretical

precisions of the n angle and the x, y elements of the

translation vector reveal the presence of the problem.

On the other hand good theoretical precision for tz
proves the excellent fit along the depth direction.

A comparison between the LS3D and ICP methods

was carried out as well. The bregistrationQ module of

the Geomagic Studio v.6 (Raindrop Geomagic) was

used as the ICP implementation. The fixed and

floating (to be transformed) surfaces were selected

as template and search surfaces, respectively. The

initial approximations were given by interactively

selecting 3 common points on both surfaces as

identical to both procedures. Since statistical results

regarding the quality of the registration were not

available from the Geomagic Studio, we compared the

residuals between fixed and transformed surfaces

using the b3D compareQ module of the same software

(Fig. 6e and f). Our proposed method gives a slightly

better result than the ICP considering the distribution

pattern and the magnitudes of the residuals. The RMS

error between the surfaces after the ICP matching is

2.55 mm, and after the LS3D matching 2.40 mm.

6.3. The Virgin Mary

This is another comparison study with respect to

the ICP method. The object is a statue of the Virgin
  
(a) (b

(d)

Fig. 8. Example bNeuschwansteinQ. (a) Left-search surface, (b) center-te

intensities are back-projected onto the composite point cloud after LS3D m

point clouds (a), (b), and (c) are thinned out for better visualization.
Mary on a wall of Neuschwanstein Castle in Bavaria,

Germany. The IMAGER 5003 laser scanner was used

to obtain the data. The search surface (Fig. 7c) was

matched to the template surface (Fig. 7b). Obtained

results are given in part III of Table 1. The data has an

occlusion part as well as a weak configuration along

the lateral direction due to the lack of sufficient

geometrical information.

Again Geomagic Studio v.6 was used both for

the ICP implementation and evaluation of the

residuals. In this experiment both methods show a

similar distribution pattern of residuals, but the

LS3D method gives a slightly better RMS error

(2.09 mm) than the ICP method (2.12 mm).

However, the difference between the RMS errors

is not significant.

6.4. Walls of Neuschwanstein Castle

The third experiment is the matching of three

overlapping 3D point clouds (Fig. 8) of scans of a

corridor in Neuschwanstein Castle in Bavaria,

Germany. The scanning was performed by the

IMAGER 5003 laser scanner. Obtained results are

given as IV-L and IV-R of Table 1. The theoretical

precision values of the parameters are highly

optimistic. One reason for this are the stochastic

properties of the search surface g(x,y,z) which have

not been considered as such in the estimation model.
   
) (c)

(e)

mplate surface, (c) right-search surface, (d) laser scanner derived

atching, (e) shaded view of the final composite surface. Note that the
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Secondly, the high redundancy number with respect

to the number of unknowns leads to an unrealistic

precision estimation.

6.5. Façade of Wangen Chapel

The last experiment is the matching of six scans of

a façade of the chapel in Wangen (Fig. 9). The

scanning was performed by use of the IMAGER 5003

(Z+F) terrestrial laser scanner. Five consecutive

matching processes were carried out using the

simultaneous multi-subpatch approach of the LS3D.

The results are given in Table 2.
Fig. 9. Example bWangen-façadeQ. (a) Shaded view of the final composite

intensity images in mono-subpatch mode, (c) template and search (left and

matching in mono-subpatch mode, (e) result of LS3D matching in multi-sub

are shown in dark and light grey, respectively.
The rightmost scan is matched to the template in

both mono-subpatch (Fig. 9b) and multi-subpatch

(Fig. 9c) modes of LS3D for comparison purposes.

The visual and numerical results are given in Fig. 9d

and e and in part V-1 of Table 2. The multi-patch

approach gives a more homogeneous distribution of

the residuals along the whole surface (see more

alternating dark and light grey tones in Fig. 9e

compared to 9-d), depending on the distribution of

the patches, and gives slightly better theoretical

precision values. As in a conventional block adjust-

ment, it also increases the a posteriori r0-value, since

every added patch into the system plays a quasi-
surface after LS3D matching, (b) template and search (left and right)

right) intensity images in multi-subpatch mode, (d) result of LS3D

patch mode. Note that in (d) and (e) the template and search surfaces



Table 2

Experimental results of multi-subpatch approach of Wangen chapel

Data set Surface

mode

No.

points

Iterations No.

patches

~point spacing

(mm)

r̂0

(mm)

r̂tx / r̂ ty / r̂ tz

(mm)

r̂x / r̂u / r̂j

(1.0e�02 grad)

V-1a P 12,371 5 1 15 2.66 0.13 /0.62 /0.58 0.51 /0.42 /0.45

B 5 2.67 0.13 /0.62 /0.58 0.51 /0.42 /0.45

V-1b P 12,248 6 8 15 3.42 0.06 /0.33 /0.15 0.24 /0.12 /0.24

B 5 3.42 0.06 /0.34 /0.14 0.24 /0.12 /0.24

V-2 P 18,242 7 8 15 3.70 0.05 /0.28 /0.21 0.24 /0.15 /0.19

B 6 3.73 0.05 /0.28 /0.21 0.25 /0.16 /0.20

V-3 P 22,753 5 5 8 3.87 0.11 /0.41 /0.15 0.23 /0.07 /0.16

B 6 3.85 0.11 /0.41 /0.15 0.23 /0.07 /0.16

V-4 P 41,889 9 6 10 3.68 0.13 /0.43 /0.19 0.16 /0.10 /0.15

B 7 3.70 0.14 /0.47 /0.19 0.16 /0.10 /0.16

V-5 P 30,335 10 5 10 4.53 0.28 /0.75 /0.33 0.21 /0.14 /0.21

B 8 4.50 0.29 /0.78 /0.33 0.22 /0.14 /0.21

Part V-2,3,4, and 5 are statistical results of the sequential LS3D matching processes of scans from the right part to the left part of the façade

shown in Fig. 9a.
a Fig. 9d mono-subpatch mode.
b Fig. 9e multi-subpatch mode.
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control information role. In addition, the parametric

bi-linear surface representation gives a slightly better

convergence rate.
7. Conclusions

The proposed 3D surface matching technique is a

generalization of the least squares 2D image matching

concept and offers high flexibility for any kind of 3D

surface correspondence problem, as well as monitoring

capabilities for the analysis of the quality of the final

results by means of precision and reliability criterions.

Another powerful aspect of the method is its ability to

handle multi-resolution, multi-temporal, multi-scale,

and multi-sensor data sets. The technique can be

applied to a great variety of data co-registration

problems. In addition, time dependent (temporal)

variations of the object surface can be inspected,

tracked, and localized using the statistical analysis

tools of the method.

Our method also allows the matching of space

curves with each other or with a 3D surface. This gives

us a hybrid formulation for feature-based matching, i.e.

matching of 3D features based on the solid theory of

Least Squares Matching. We also have shown how the

computational effort for matching of large and many

data sets can be substantially reduced by applying a

subpatch matching concept. This approach uses only a
selected number of small patches instead of the whole

surface(s) for matching.

In this contribution, we have demonstrated the

capability of this technique with the help of five

different data sets. In all cases, our experiences were

very positive and the procedures for internal quality

control worked very well. There are several ways to

refine and extend the technique.

Future work will include the verification of the

theoretical expectations by more practical experimen-

tation in order to utilize the full power of the technique.

Also, we plan to use the method in a variety of different

applications, including the implementation and testing

of the 3D curve matching approach. Another prospect

is the simultaneous matching of geometry and attribute

information, e.g. temperature, intensity, color, etc.,

under a combined estimation model.
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