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ABSTRACT 
 
An algorithm for the least squares matching of overlapping 3D surfaces is presented. It estimates the transformation 
parameters between two or more fully 3D surfaces, using the Generalized Gauss-Markoff model, minimizing the 
sum of squares of the Euclidean distances between the surfaces. This formulation gives the opportunity of matching 
arbitrarily oriented 3D surfaces simultaneously, without using explicit tie points. Besides the mathematical model 
and execution aspects we give further extension of the basic model. The first extension is the simultaneous matching 
of sub-surface patches, which are selected in cooperative surface areas. It provides a computationally effective 
solution, since it matches only relevant multi-subpatches rather than the whole overlapping areas. The second 
extension is the matching of surface geometry and its attribute information, e.g. reflectance, color, temperature, etc., 
under a combined estimation model. We give practical examples for the demonstration of the basic method and the 
extensions. 
 

INTRODUCTION 
 
For 3D object modeling data acquisition must be performed from different standpoints. The derived local point 

clouds must be transformed into a common system. This procedure is usually referred to as registration. In the past, 
several efforts have been made concerning the registration of 3D point clouds. One of the most popular methods is 
the Iterative Closest Point (ICP) algorithm developed by Besl and McKay (1992), Chen and Medioni (1992), and 
Zhang (1994). The ICP is based on the search of pairs of nearest points in the two sets, and estimating the rigid 
transformation, which aligns them. Then, the rigid transformation is applied to the points of one set, and the 
procedure is iterated until convergence. The ICP assumes that one point set is a subset of the other. When this 
assumption is not valid, false matches are created, that negatively influence the convergence of the ICP to the 
correct solution (Fusiello et al., 2002).  

Several variations and improvements of the ICP method have been made (Masuda and Yokoya, 1995; Bergevin 
et al., 1996). From a computational expense point of view it is highly time consuming due to the exhaustive search 
for the nearest point (Sequeira et al., 1999). In Besl and McKay (1992), and Zhang’s (1994) works the ICP requires 
every point in one surface to have a corresponding point on the other surface. An alternative approach to this search 
schema was proposed by Chen and Medioni (1992). They used the distance between the surfaces in the direction 
normal to the first surface as a registration evaluation function instead of point–to–nearest point distance. This point-
to-tangent plane distance idea was originally proposed by Potmesil (1983). In Dorai et al. (1997) the method of 
Chen and Medioni was extended to an optimal weighted least-squares framework. Zhang (1994) proposed a 
thresholding technique using robust statistics to limit the maximum distance between points. Masuda and Yokoya 
(1995) used the ICP with random sampling and least median square error measurement that is robust to a partially 
overlapping scene. Okatani and Deguchi (2002) proposed the best transformation of two range images to align each 
other by taking into account the measurement error properties, which are mainly dependent on both the viewing 
direction and the distance to the object surface.  

The ICP algorithm always converges monotonically to a local minimum with respect to the mean-square 
distance objective function (Besl and McKay, 1992). It does not use the local surface gradients in order to direct the 
solution to a minimum. Originally, it was not designed to register multi-scale range data. Several reviews and 
comparison studies about the ICP variant methods are available in the literature (Jokinen and Haggren, 1998; 
Williams et al., 1999; Campbell and Flynn, 2001). In Neugebauer (1997) and Szeliski and Lavallee (1996) two 
gradient descent type of algorithms were given. They adopt the Levenberg-Marquardt method for the estimation.  

Since 3D point clouds derived by any method or device represent the object surface, the problem should be 
defined as a surface matching problem. In Photogrammetry, the problem statement of surface patch matching and its 
solution method was first addressed by Gruen (1985) as a straight extension of Least Squares Matching (LSM). 

devrima
Text Box
http://www.photogrammetry.ethz.ch/general/persons/devrim_publ.html

http://www.photogrammetry.ethz.ch/general/persons/devrim_publ.html


ASPRS 2005 Annual Conference 
“Geospatial Goes Global: From Your Neighborhood to the Whole Planet” 

March 7-11, 2005  Baltimore, Maryland 
 

There have been some studies on the absolute orientation of stereo models using Digital Elevation Models 
(DEM) as control information. This work is known as DEM matching. The absolute orientation of the models using 
Digital Terrain Models (DTM) as control information was first proposed by Ebner and Mueller (1986), and Ebner 
and Strunz (1988). Afterwards, the functional model of DEM matching has been formulated by Rosenholm and 
Torlegard (1988). This method basically estimates the 3D similarity transformation parameters between two DEM 
patches, minimizing the sum of squares of differences along the Z-axes. Several applications of DEM matching have 
been reported (Karras and Petsa, 1993; Pilgrim, 1996; Mitchell and Chadwick, 1999; Xu and Li, 2000).  

Maas (2000) successfully applied a similar method to register airborne laser scanner strips, among which 
vertical and horizontal discrepancies generally show up due to GPS/INS accuracy problems. Another similar method 
has been presented for registering surfaces acquired using different methods, in particular, laser altimetry and 
photogrammetry (Postolov et al., 1999). Furthermore, techniques for 2.5D DEM surface matching have been 
developed, which correspond mathematically to Least Squares Image Matching. The DEM matching concept can 
only be applied to 2.5D surfaces, whose analytic function is described in the explicit form as a single valued 
function, i.e. z = f (x, y). 2.5D surfaces are of limited value in case of generally formed objects. 

When the surface curvature is either homogeneous or isotropic, as it is the case with all second order surfaces, 
e.g. plane or sphere, the geometry based registration techniques will probably fail. In some studies surface geometry 
and intensity (or color) information has been combined in order to solve this problem (Weik, 1997; Johnson and 
Kang, 1999; Maas, 2001; Vanden Wyngaerd and Van Gool, 2003). 

The LSM (Gruen, 1985) concept has been applied to many different types of measurement and feature 
extraction problems due to its high level of flexibility and its powerful mathematical model: Adaptive Least Squares 
Image Matching, Geometrically Constrained Multiphoto Matching, Image Edge Matching, Multiple Patch Matching 
with 2D images, Multiple Cuboid (voxel) Matching with 3D images, Globally Enforced Least Squares Template 
Matching, Least Squares B-spline Snakes. For a detailed survey the authors refer to Gruen (1996). If 3D point clouds 
derived by any device or method represent an object surface, the problem should be defined as a surface matching 
problem instead of the point cloud matching. In particular, we treat it as least squares matching of overlapping 3D 
surfaces, which are digitized/sampled point by point using a laser scanner device, the photogrammetric method or 
other surface measurement techniques. This definition allows us to find a more general solution for the problem as 
well as to establish a flexible mathematical model in the context of LSM. 

Our mathematical model is another generalization of the LSM (Gruen, 1985), as for the case of multiple cuboid 
matching in 3D voxel space (Maas, 1994; Maas and Gruen, 1995).  

Our proposed method, Least Squares 3D Surface Matching (LS3D), estimates the 3D transformation parameters 
between two or more fully 3D surface patches, minimizing the sum of squares of the Euclidean distances between 
the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D surface patches. An 
observation equation is written for each surface element on the template surface patch, i.e. for each sampled point. 
The geometric relationship between the conjugate surface patches is defined as a 7-parameter 3D similarity 
transformation. This parameter space can be extended or reduced, as the situation demands it. The constant term of 
the adjustment is given by the observation vector whose elements are Euclidean distances between the template and 
search surface elements. Since the functional model is non-linear, the solution is iterative. The unknown 
transformation parameters are treated as stochastic quantities using proper a priori weights. This extension of the 
mathematical model gives control over the estimation parameters. The details of the mathematical modeling of the 
proposed method, precision and reliability issues, convergence behavior, and the computational aspects are 
explained in the following section. The further extensions to the basic model are given in the third section. Two 
practical examples for the demonstration of the basic method and the extensions are presented in the fourth section. 

 
 

LEAST SQUARES 3D SURFACE MATCHING (LS3D) 
 

The Basic Estimation Model 
Assume that two different partial surfaces of the same object are digitized/sampled point by point, at different 

times (temporally) or from different viewpoints (spatially). Although the conventional sampling pattern is point 
based, any other type of sampling pattern is also accepted. f (x, y, z) and g (x, y, z) are conjugate regions of the object 
in the left and right surfaces respectively. The problem statement is finding the correspondent part of the template 
surface patch f (x, y, z) on the search surface g (x, y, z). 

 
),,(),,( zyxgzyxf =                    (1) 
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According to Equation (1) each surface element on the template surface patch f (x, y, z) has an exact 
correspondent surface element on the search surface g (x, y, z), or vice-versa, if both of the surfaces would 
analytically be continuous surfaces without any deterministic or stochastic discrepancies. In order to model the 
stochastic discrepancies, which are assumed to be random errors, and may come from the sensor, environmental 
conditions or measurement method, a true error vector e(x, y, z) is added as: 

 
),,(),,(),,( zyxgzyxezyxf =−                  (2) 

 
Equation (2) are observation equations, which functionally relate the observations f (x, y, z) to the parameters of 

g (x, y, z). The matching is achieved by least squares minimization of a goal function, which represents the sum of 
squares of the Euclidean distances between the template and the search surface elements: ∑||d ||2=min and in Gauss 
form [dd ]=min, where d stands for the Euclidean distance. The final location is estimated with respect to an initial 
position of g (x, y, z), the approximation of the conjugate search surface g0(x, y, z). 

To express the geometric relationship between the conjugate surface patches, a 7-parameter 3D similarity 
transformation is used: 

 
)( 013012011 zryrxrmtx x +++=  
)( 023022021 zryrxrmty y +++=                  (3) 
)( 033032031 zryrxrmtz z +++=  

 
where rij = R(ω,φ,κ) are the elements of the orthogonal rotation matrix, [tx  ty  tz ]T is the translation vector, and m is 
the uniform scale factor. 

Depending on the deformation between the template and the search surfaces, any other type of 3D 
transformations could be used, e.g. 12-parameter affine, 24-parameter tri-linear, or 30-parameter quadratic family of 
transformations. 

In order to perform least squares estimation, Equation (2) must be linearized by Taylor expansion, ignoring 2nd 
and higher order terms. 
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where pi ∈{tx , ty , tz , m, ω, φ, κ} is the i-th transformation parameter in Equation (3). Differentiation of Equation (3) 
gives: 

κ+ϕ+ω++= dadadadmadtdx x 13121110  
κ+ϕ+ω++= dadadadmadtdy y 23222120                 (6) 

κ+ϕ+ω++= dadadadmadtdz z 33323130  
 
where ija  are the coefficient terms, whose expansions are trivial. Using the following notation 
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and substituting Equations (6), Equation (4) results in the following:  
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In the context of the Gauss-Markoff model, each observation is related to a linear combination of the 
parameters, which are variables of a deterministic unknown function. This function constitutes the functional model 
of the whole mathematical model. The terms {gx , gy , gz} are numeric 1st derivatives of this function g (x, y, z). 

Equation (8) gives in matrix notation 
 

P          lAxe ,−=−                    (9) 
 

where A is the design matrix, xT = [dtx  dty  dtz  dm  dω  dφ  dκ] is the parameter vector, and  l = f (x, y, z) - g0(x, y, z) is 
the constant vector that consists of the Euclidean distances between the template and correspondent search surface 
elements. The template surface elements are approximated by the data points, on the other hand the search surface 
elements are represented in two different kind of piecewise forms (planar and bi-linear) optionally, which will be 
explained in the following. In general both surfaces can be represented in any kind of piecewise form.  

With the statistical expectation operator E{} and the assumptions 
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the system (9) and (10) is a Gauss-Markoff estimation model. llll PP  Q =,  and llK  stand for a priori cofactor, 
weight and covariance matrices respectively.  

The unknown transformation parameters are treated as stochastic quantities using proper a priori weights. This 
extension gives advantages of control over the estimating parameters (Gruen, 1986). In the case of poor initial 
approximations for unknowns or badly distributed 3D points along the principal component axes of the surface, 
some of the unknowns, especially the scale factor m, may converge to a wrong solution, even if the scale factors 
between the surface patches are same. We introduce the additional observation equations on the system parameters 
as 

bbb P          lxIe ,−=−                 (11) 
 

where I is the identity matrix, lb is the (fictitious) observation vector for the system parameters, and Pb is the 
associated weight coefficient matrix. The weight matrix Pb has to be chosen appropriately, considering a priori 
information of the parameters. An infinite weight value ((Pb)ii → ∞) excludes the i-th parameter from the system, 
assigning it as constant, whereas zero weight ((Pb)ii = 0) allows the i-th parameter to vary freely, assigning it as 
unknown parameter in the classical meaning.  

The least squares solution of the joint system Equations (9) and (11) gives as the Generalized Gauss-Markoff 
model the unbiased minimum variance estimation for the parameters 

 
)()(ˆ T1T

bbb lPPlAPPAAx ++= −   solution vector            (12) 

rbbb )(ˆ TT2
0 vPvPvv +=σ    variance factor            (13) 

lxAv −= ˆ      residual vector for surface observations         (14) 

bb lxIv −= ˆ      residual vector for parameter observations         (15) 
 

where ^ stands for the Least Squares Estimator, and r is the redundancy. When the system converges, the solution 
vector converges to zero ( x̂ → 0). Then the residuals of the surface observations (v)i become the final Euclidean 
distances between the estimated search surface and the template surface patches. 
 

},...,1{,),,(),,(ˆ)( nizyxfzyxg iii =−=           v               (16) 
 
The function values g0(x, y, z) in Equation (2) are actually stochastic quantities. This fact is neglected here to 

allow for the use of the Gauss-Markoff model and to avoid unnecessary complications, as typically done in LSM 
(Gruen, 1985). Since the functional model is non-linear, the solution is obtained iteratively. In the first iteration the 
initial approximations for the parameters must be provided: pi

0 ∈{tx
0, ty

0, tz
0, m0, ω0, φ0, κ0}. After the solution vector 

(12) is solved, the search surface g0(x, y, z) is transformed to a new state using the updated set of transformation 
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parameters, and the design matrix A and the constant vector l are re-evaluated. The iteration stops if each element of 
the alteration vector x̂  in Equation (12) falls below a certain limit: 

}7,,2,1{,},,,,,,{, ...iddddmdtdtdtdpcdp zyxiii =κϕω∈<                                (17) 
 
The numerical derivative terms {gx , gy , gz} are defined as local surface normals. Their calculation depends on 

the analytical representation of the search surface elements.  
As a first method, let us represent the search 

surface elements as planar surface patches 
(Figure 1-a), which are constituted by fitting a 
plane to 3 neighboring knot points, in the non-
parametric implicit form 

 
0),,(0 =+++= DCzByAxzyxg          (18) 

 
where A, B, C, and D are the parameters of the 
plane. The derivative terms are x-y-z components 
of the local surface normal vector n at that point: 

 

[ ] [ ]
222

T
T

CBA

CBA
ggg zyx

++
==n    (19) 

 
For the representation of the search surface elements as parametric bi-linear surface patches (Figure 1-b), a bi-

linear surface is fitted to 4 neighboring knot points Pij : 
 

uwwuwuwuwug 11100100 PP PP +−+−+−−= )1()1()1)(1(),(0             (20) 
 

where u, w ∈ [0,1]2 and g0(u,w), Pij ∈ ℛ3. The vector g0(u,w) is the position vector of any point on the bi-linear 
surface. Again the numeric derivative terms {gx , gy , gz} are calculated from components of the local surface normal 
vector n on the parametric bi-linear surface patch: 
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where ×  stands for the vector cross product. With this approach a slightly better a posteriori sigma naught value 
could be obtained due to better surface modeling. 

 
Precision and Reliability 

The standard deviations of the estimated transformation parameters and the correlations between themselves 
may give useful information concerning the stability of the system and quality of the data content (Gruen, 1985):  

 
1T

0 )(,ˆˆ −+=∈σ=σ bxxppppp qq PPAAQ                       (22) 

 
where Qxx is the cofactor matrix for the estimated parameters. As pointed out in Maas (2000), the estimated standard 
deviations of the transformation parameters are usually too optimistic due to the stochastic properties of the search 
surface, which are not taken into consideration. In order to localize and eliminate the occluded parts and the outliers 
a simple weighting scheme adapted from the Robust Estimation Methods is used: 
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Figure 1. Representation of surface elements in triangle plane
form (a), and in parametric bi-linear form (b). Note that T{}
stands for the transformation operator. 
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In our experiments K is selected as >10, since it is aimed to suppress only the large outliers. Because of the high 
redundancy of a typical data arrangement, a certain amount of occlusions and/or smaller outliers do not have 
significant effect on the estimated parameters. As a comprehensive strategy, Baarda’s data-snooping method can be 
favourably used to localize the occluded or gross erroneous measurements.  

 
Convergence of Solution Vector 

In a standard least squares adjustment calculus, 
the function of the unknowns is unique, exactly 
known, and analytically continuous everywhere. Here 
the function g(x, y, z) is discretized by using a finite 
sampling rate, which leads to slow convergence, 
oscillations, and even divergence in some cases with 
respect to the standard adjustment. The convergence 
behaviour of the proposed method basically depends 
on the quality of the initial approximations and 
quality of the data content. For a good data 
configuration it usually achieves the solution after 5 
or 6 iterations (Figure 2), which is typical for LSM.  

 
Computational Aspects 

The computational effort increases with the number of points in the matching process. The main portion of the 
computational complexity is to search the correspondent elements of the template surface patch on the search 
surface, whereas the adjustment part is a small system, and can quickly be solved using Cholesky decomposition 
followed by back-substitution. Searching the correspondence is an algorithmic problem, and needs professional 
software optimization techniques and programming skills, which are not within the scope of this paper. 

In the case of insufficient initial approximations, the numerical derivatives {gx , gy , gz} can also be calculated 
on the template surface patch f (x, y, z) instead of on the search surface g(x, y, z) in order to speed-up the convergence. 
This speed-up version apparently decreases the computational effort of the design matrix A as well, since the 
derivative terms {fx , fy , fz} are calculated only once in the first iteration, and the same values are used in the 
following iterations. As opposed to the basic model, the number of the observation equations contributing to the 
design matrix A is here defined by the number of elements on the search surface patch g(x, y, z). 

Two 1st degree C0 continuous surface representations are implemented. In the case of multi-resolution data sets, 
in which point densities are significantly different on the template and search surfaces, higher degree C1 continuous 
composite surface representations, e.g. bi-cubic Hermit surface (Peters, 1974), should give better results, of course 
increasing the computational expenses. 

 
 

FURTHER EXTENSIONS TO THE BASIC MODEL 
 

Simultaneous Multi-Subpatch Matching 
The basic estimation model can be implemented in a multi-patch mode, that is the simultaneous matching of 

two or more search surfaces ),,( zyxgi , i=1,…,k to one template surface ),,( zyxf .  

11111 , P          lxAe −=−  

22222 , P          lxAe −=−                 (24) 
MM                          

kkkkk P          lxAe ,−=−  
 
Since the parameter vectors x1 ,…, xk do not have any joint components, the sub-systems of Equation (24) are 

orthogonal to each other. In the presence of auxiliary information those sets of equations could be connected via 
functional constraints, e.g. as in the Geometrically Constrained Multiphoto Matching (Gruen, 1985; Gruen and 
Baltsavias, 1988) or via appropriate formulation of multiple (>2) overlap conditions. 

An ordinary point cloud includes enormously redundant information. A straightforward way to register such 
two point clouds could be matching of the whole overlapping areas. This is computationally expensive. We propose 
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convergence. Note that here the scale factor m is fixed to 
unity. 
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multi-subpatch mode as a further extension to the basic model, which is capable of simultaneous matching of sub-
surface patches, which are selected in cooperative surface areas. They are joined to the system by the same 3D 
transformation parameters. This leads to the observation equations 

1111 , P          lxAe −=−  

2222 , P          lxAe −=−                 (25) 
MM                        

kkkk P          lxAe ,−=−  
 

with  i=1,…, k  subpatches. They can be combined as in Equation (9), since the common parameter vector x joints 
them to each other. The individual subpatches may not include sufficient information for the matching of whole 
surfaces, but together they provide a computationally effective solution, since they consist of only relevant 
information rather than using the full data set. One must carefully select the distribution and size of the subpatches 
in order to get a homogeneous quality of the transformation parameters in all directions of the 3D space.  

 
Simultaneous Matching of Surface Geometry and Intensity 

In case of lack of sufficient geometric information (homogeneity or isotropicity of curvatures) the procedure 
may fail, since there is not a unique solution geometrically, e.g. in case of matching of two planes or spherical 
objects. An object surface may have some attribute information attached to it. Intensity, color, and temperature are 
well known examples. Most of the laser scanners can supply intensity information in addition to the Cartesian 
coordinates for each point, or an additional camera may be used to collect texture. We propose another further 
extension that can simultaneously match intensity information and surface geometry under a combined estimation 
model. In this approach the intensity image of the point cloud also contributes observation equations to the system, 
considering the intensities as supplementary information to the range image. 

Rather than adopting a feature-based or step-wise approach our method sets up quasi-surfaces from intensity 
information in addition to the actual surfaces. A hypothetical example of forming the quasi-surfaces is given in 
Figure 3. The procedure starts with the calculation of surface normal vectors at each data point. The actual surface 
will include noise and surface spikes (Figure 3-b), which lead to unrealistic calculation for the normal vectors. To 
cope with the problem a moving average or median type filtering process could be employed. But still some noise 
would remain depending on the window size. 

An optimum solution is the least squares fitting of a global trend surface to the whole point cloud (Figure 3-c). 
It will suppress the noise component and preserves the global continuity of the normal vectors along the surface. We 
opt for the parametric bi-quadratic trend surface, which is sufficient to model the quadric type of surfaces, e.g. 
plane, sphere, ellipsoid, etc. For the template surface patch ),,( zyxf  we may write: 
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where u, w ∈ [0,1]2, F(u,w) ∈ ℛ3  is the position vector of any point on the trend surface, and bij ∈ ℛ3 are the 
algebraic coefficients, which are estimated by the least squares fitting. For each point the normal vector nf is 
calculated on the trend surface F(u,w) and attached to the actual surface f (x, y, z) (Figure 3-d): 

wuwuff wu FFFFnn ××== ),(                (28) 
where Fu and Fw are the tangent vectors along the u and w-axes respectively. Finally the quasi-surface fc (x, y, z) is 
formed in such a way that each point of the actual surface f (x, y, z) is mapped along its normal vector nf up to a 
distance proportional to its intensity value cf  (Figure 3-e). 

 
ffc czyxfzyxf λ+= n),,(),,(                (29) 

 
where λ is an appropriate scalar factor for the conversion from the intensity range to the Cartesian space. Rather than 
the actual surface f (x, y, z) the trend surface F(u,w) can also be defined as the datum, which leads to 

 
ffc cwuFzyxf λ+= n),(),,(                 (30) 
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This isolates the geometric noise component from the quasi-surface fc (x, y, z), but strongly smoothes the 
geometry. Equations (29) and (30) assume a fairly simplistic radiometric model (intensities are mapped 
perpendicular to the geometric surface). We will refine this model in subsequent work.  

The same procedure is performed for the search surface ),,( zyxg  as well: 
 

ggc czyxgzyxg λ+= n),,(),,(                (31) 
 
Equation (2) should also be valid for the quasi-surfaces under the assumption that similar illumination 

conditions exist for the both template and search surfaces: 
 

),,(),,(),,( zyxgzyxezyxf ccc =−                (32) 

 
 (a)  (b)   (c)   (d)   (e) 
 
Figure 3. Forming the quasi-surface. (a) Point cloud with intensity information, (b) meshed surface of the point 
cloud, (c) trend surface fitted to the point cloud, (d) noise-free normal vectors, (e) generated quasi-surface in 
addition to the actual one. 

 
The random errors of the template and search quasi-surfaces are assumed to be uncorrelated. The contrast and 

brightness differences or in the extreme case specular reflection will cause model errors, and deteriorate the 
reliability of the estimation. The radiometric variations between the template and search surface intensities should be 
adapted before matching by pre-processing or appropriate modeling in the estimation process by extra parameters.  

For two images of an object acquired by an optical-passive sensor, e.g. a CCD camera, such an intensity transfer 
function (cf = r0 + cg r1) could be suitable for the radiometric adaptation, where r0 (shift) and r1 (scale) are 
radiometric correction parameters. In the case of laser scanner derived intensity images the radiometric variations 
are strongly dependent on both the incident angle of the signal path with respect to object surface normal and object-
to-sensor distance. Then, for a plane type of object the radiometric variations can be modeled in first approximating 
as in the following:  

 
10),,(),,(),,( urrzyxgzyxezyxf ccc ++=−               (33) 

 
where u is the abscissa of the search trend surface G(u,w), considering that u-axis is the horizontal direction. In other 
words, u-axis is the principal direction of changing of the incident angles. Depending on the characteristics of scan 
data it can be replaced by ordinate value w, or another type of parameterization. In general a second order bivariate 
polynomial (r0 + ur1 + wr2 + uwr3 + u2r4 + w2r5) or an appropriate subpart of it can be used. 

Although the radiometric parameters r0 and r1 are linear a priori, we expand them to Taylor series. Equation 
(33) in linearized form gives: 
 

}));{),,((),,((),,( 0
1

0
0

0
10 gccczcycxc urrzyxgzyxfudrdrdzgdygdxgzyxe n++−−++++=−         (34) 

 
where gcx , gcy , and gcz stand for the derivative terms like as given in Equation (7) for the actual surface 
observations. The first approximations of the radiometric parameters are r0

0 = r1
0 = 0. At the end of the each iteration 

the quasi search surface gc
0(x, y, z) is transformed to a new state using the updated set of transformation parameters, 

and subsequently re-shaped by the current set of radiometric parameters r0
0+ur1

0 along the normal vectors ng , which 
are calculated on the search trend surface G(u,w).  
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The quasi-surfaces are treated like actual surfaces in the estimation model. They contribute observation 
equations to the design matrix, joining the system by the same set of transformation parameters. After the further 
expansion of Equation (34) and with the assumptions E{ec}=0 and E{ec ec

T}=σ0
2Pc

-1, the total system becomes  
P          lxAe ,−=−  

bbb P          lxIe ,−=−                 (35) 

cccc P          lxAe ,−=−  
where ec , Ac , and Pc are the true error vector, the design matrix, and the associated weight coefficient matrix for the 
quasi-surface observations respectively, and lc is the constant vector that contains the Euclidean distances between 
the template and correspondent search quasi-surfaces elements. The hybrid system in Equation (35) is of the 
combined adjustment type that allows simultaneous matching of geometry and intensity.  

In our experiments, weights for the quasi-surface observations are selected as (Pc)ii < (P)ii , and the intensity 
measurements of the (laser) sensor are considered to be uncorrelated with the distance measurements (E{ec eT}=0) 
for the sake of simplicity of the stochastic model.  

 
 

EXPERIMENTAL RESULTS 
 
Two practical examples are given to show the capabilities of the method. All experiments were carried out 

using own self-developed C/C++ software that runs on Microsoft Windows® OS. In all experiments the initial 
approximations of the unknowns were provided by interactively selecting 3 common points on both surfaces before 
matching. Since in all data sets there was no scale difference, the scale factor m was fixed to unity by infinite weight 
value ((Pb)ii → ∞). The iteration criteria values ci were selected as 1.0e-4 meters for the elements of the translation 
vector and 1.0e-3 gon for the rotation angles.  

The first example is the registration of three point clouds of a plant (Figure 4). The scanning was performed by 
the HDS 2500 (Leica Geosystems) laser scanner. The average point spacing is 12 millimeters. The point clouds 
Figure 4-a and 4-c were matched to Figure 4-b by use of the LS3D surface matching. In this experiment the whole 
overlapping areas were matched. The numerical results of the matching of the first and third point clouds are given 
in parts I and II of Table 1 respectively. Even though it is a very complex environment, the matching process is quite 
successful. Relatively homogeneous and small magnitudes of the theoretical precisions of the parameters show an 
excellent fit along all directions. However the theoretical precisions are too optimistic. 

 

 

(a) 

 

(b) 

 

(c) 

(d) 
 
Figure 4. Example “plant”. (a), (b), (c) First, second and third point cloud, (d) composite point cloud after the LS3D 
surface matching. Note that laser scanner derived intensities are back-projected onto the point clouds.  
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A further matching process was carried out using the simultaneous multi-subpatch approach of the LS3D. For 
the first point cloud 5 and for the third point cloud 7 occlusion-free cooperative subpatches were selected. The 
results of the matching of the first and third point clouds are given in parts III and IV of Table 1 respectively. 
Although the precision values increase while the system redundancy decreases, they are still optimistic mainly due 
to the stochastic properties of the search surfaces. 
Table 1. Numerical results of “plant” example 
# surf. 

mode ∑points Iter. 0σ̂  tztytx σσσ ˆ/ˆ/ˆ  κϕω σσσ ˆ/ˆ/ˆ  

    (mm) (mm) (1.0e-02 gon) 
I P 245041 6 2.78 0.03 / 0.03 / 0.01 0.01 / 0.01 / 0.03
 B  5 2.79 0.03 / 0.03 / 0.01 0.01 / 0.01 / 0.03
II P 323936 7 2.54 0.02 / 0.02 / 0.01 0.01 / 0.01 / 0.02
 B  6 2.52 0.02 / 0.02 / 0.01 0.01 / 0.01 / 0.02
III P   20407 6 2.11 0.09 / 0.09 / 0.04 0.05 / 0.04 / 0.08
 B  5 2.09 0.09 / 0.09 / 0.04 0.05 / 0.04 / 0.08
IV P   37983 8 2.01 0.04 / 0.04 / 0.02 0.03 / 0.03 / 0.07
 B  8 2.00 0.04 / 0.05 / 0.02 0.03 / 0.03 / 0.07
P: plane surface representation, B: bi-linear surface representation 

 
Consequently weights for the quasi-surface observations are selected as (Pc)ii=0.75. The iteration criteria values ci 
were selected as 2.0e-4 meters for the elements of the translation vector and 5.0e-3 gon for the rotation angles. The 
search surface, selected on the right point cloud, was matched to the template one, which was selected on the left 
point cloud (Figure 5-c). The numerical results are given in Table 2. 

 

(a) (b) (c) 

The second experiment refers to 
simultaneous matching of surface 
geometry and intensity. Two scans of a 
wall painting in Neuschwanstein Castle in 
Bavaria, Germany, were matched (Figure 
5). The scanning was performed using the 
IMAGER 5003 (Zoller+Fröhlich) laser 
scanner. The average point spacing is 3 
millimeters. Laser scanner derived 
reflectance values were used as intensity 
information. The actual surface 
observations are considered as the unit 
weight (P)ii=1. 
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(d) 
Figure 5. Example “Neuschwanstein”. (a) Left point cloud, (b) right point cloud, (c) coverage of the template patch 
(inner quadrangle) and the search patch (outer quadrangle), which are selected on the left and right point clouds 
respectively, (d) composite point cloud after the simultaneous matching of geometry and intensity by LS3D. Note 
that laser scanner derived intensities are back-projected onto the point clouds. 
Table 2. Numerical results of “Neuschwanstein” example 
# surf. 

mode datum ∑points Iter. RMSE tztytx σσσ ˆ/ˆ/ˆ  κϕω σσσ ˆ/ˆ/ˆ  

     (mm) (mm) (1.0e-02 gon) 
V P f/g 45652 14 1.16 0.26 / 0.06 / 0.07 0.15 / 0.16 / 0.53
 B f/g  12 1.18 0.26 / 0.06 / 0.07 0.15 / 0.16 / 0.53
VI P F/G 45652 12 1.16 0.25 / 0.06 / 0.07 0.15 / 0.15 / 0.50
 B F/G  12 1.18 0.25 / 0.06 / 0.07 0.15 / 0.15 / 0.50
f/g: datum are the actual surfaces f /g(x, y, z)  
F/G: datum are the trend surfaces F/G(u,w) 
RMSE: root mean square error of the residuals of the actual surface observations 
 
 

CONCLUSIONS 
 
An algorithm for the least squares matching of overlapping 3D surfaces is presented. Our proposed method, the 

Least Squares 3D Surface Matching (LS3D), estimates the transformation parameters between two or more fully 3D 
surfaces, using the Generalized Gauss Markoff model, minimizing the sum of squares of the Euclidean distances 
between the surfaces. The mathematical model is a generalization of the least squares image matching method and 
offers high flexibility for any kind of 3D surface correspondence problem. The least squares concept allows for the 
monitoring of the quality of the final results by means of precision and reliability criterions. By appropriately 
selecting the 3D transformation method and the surface representation type, it is able to match multi-resolution, 
multi-temporal, multi-scale, and multi-sensor data sets.  

The capabilities of the technique are illustrated by a practical example. There are several ways to extend the 
technique. Here we give two of them, which are simultaneous matching of surface geometry and intensity under a 
combined estimation model and simultaneous multi-subpatch matching. Future studies will include more practical 
examples to demonstrate the full power of the technique.  

The technique can be applied to a great variety of data co-registration problems. Since it reveals the sensor 
noise level and accuracy potential of any kind of surface measurement method or device, it can be used for 
comparison and validation studies. In addition time dependent (temporal) variations of the object surface can be 
inspected, tracked, and localized using the statistical analysis tools of the method. 

Since the object is a plane, only 
surface geometry is not enough for 
the matching. Using the combined 
matching of surface geometry and 
intensity approach of the LS3D a 
successful solution has been 
achieved. The datum as the trend 
surface option gives a better 
convergence rate. 
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