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ABSTRACT:

A new algorithm for least squares matching of overlapping 3D surfaces, digitized/sampled point by point using a laser scanner
device, the photogrammetric method or other techniques, is proposed. In photogrammetry, the problem statement of surface patch
matching and its solution method was first addressed by Gruen (1985a) as a straight application of Least Squares Matching. There
have been some studies on the absolute orientation of stereo models using DEMs as control information. These works have been
known as DEM matching. Furthermore, techniques for 2.5D DEM surface matching have been developed, which correspond
mathematically with least squares image matching. 2.5D surfaces have limited value, especially in close range applications. Our
proposed method estimates the transformation parameters between two or more fully 3D surface patches, minimizing the Euclidean
distances instead of Z-differences between the surfaces by least squares. This formulation gives the opportunity of matching
arbitrarily oriented surface patches. An observation equation is written for each surface element on the template surface patch, i.e. for
each sampled point. The geometric relationship between the conjugate surface patches is defined as a 7-parameter 3D similarity
transformation. The Least Squares observations of the adjustment are defined by the observation vector whose elements are
Euclidean distances between the template and search surface elements. The unknown transformation parameters are treated as
stochastic quantities using proper weights. This extension of the functional model gives control over the estimation parameters. The
details of the mathematical modelling of the proposed method, the convergence behavior, and statistical analysis of the theoretical
precision of the estimated parameters are explained. Furthermore, some experimental results based on registration of close-range
laser scanner and photogrammetric point clouds are presented. This new surface matching technique derives its mathematical
strength from the least squares image matching concept and offers high level flexibility for any kind of 3D surface correspondence
problem, as well as statistical tools for the analysis of the quality of the final results.

1. INTRODUCTION

Laser scanners can measure directly 3D coordinates of huge
amounts of points in a short time period. Since the laser scanner
is a line-of-sight instrument, in many cases the object has to be
scanned from different viewpoints in order to completely
reconstruct it. Because each scan has its own local coordinate
system, all the local point clouds must be transformed into a
common coordinate system. This procedure is usually referred
to as registration. Actually the registration is not a specific
problem to the laser scanner domain. Since the problem is more
general than the given definition, the emphasis of our work is to
investigate the most general solution of the registration problem
on a theoretical basis.

In the past, several efforts have been made concerning the
registration of 3D point clouds, especially in the Computer
Vision area. One of the most popular methods is the Iterative
Closest Point (ICP) algorithm developed by Besl and McKay
(1992), Chen and Medioni (1992), and Zhang (1994). The ICP
is based on the search of pairs of nearest points in the two sets,
and estimating the rigid transformation, which aligns them.
Then, the rigid transformation is applied to the points of one
set, and the procedure is iterated until convergence. The ICP
assumes that one point set is a subset of the other. When this
assumption is not valid, false matches are created, that
negatively influence the convergence of the ICP to the correct
solution (Fusiello et al., 2002). Several variations and
improvements of the ICP method have been made (Masuda and
Yokoya, 1995, Bergevin et al., 1996), but several problems still
remain. From a computational expense point of view it is highly
time consuming due to the exhaustive search for the nearest
point (Sequeira, et al., 1999). Another problem is that it
requires every point in one surface to have a corresponding
point on the other surface. An alternative approach to this

search problem was proposed by Chen and Medioni (1992).
They used the distance between the surfaces in the direction
normal to the first surface as a registration evaluation function
instead of point–to–nearest point distance. This idea was
originally proposed by Potmesil (1983). In (Dorai et al., 1997)
the method of Chen and Medioni was extended to an optimal
weighted least-squares framework. Zhang (1994) proposed a
thresholding technique using robust statistics to limit the
maximum distance between points. Masuda and Yokoya (1995)
used the ICP with random sampling and least median square
error measurement that is robust to a partially overlapping
scene. Okatani and Deguchi (2002) propose the best
transformation of two range images to align each other by
taking into account the measurement error properties, which are
mainly dependent on both the viewing direction and the
distance to the object surface. The ICP algorithm always
converges monotonically to a local minimum with respect to the
mean-square distance objective function (Besl and McKay,
1992). Even if good initial approximations for the
transformation parameters are provided, in some cases it might
converge to a wrong solution due to its closest point (or tangent
plane) search scheme. It does not use the local surface gradients
in order to direct the solution to a global minimum. Another
deficiency of the ICP method is to be not able to handle multi-
scale range data. Several reviews and comparison studies about
the ICP variant methods are available in the literature (Jokinen
and Haggren, 1998, Williams et al., 1999, Campbell and Flynn,
2001).

Since 3D point clouds derived by any method or device
represent the object surface, the problem should be defined as a
surface matching problem. In Photogrammetry, the problem
statement of surface patch matching and its solution method
was first addressed by Gruen (1985a) as a straight extension of
Least Squares Matching (LSM).
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There have been some studies on the absolute orientation of
stereo models using DEMs as control information. This work is
known as DEM matching. The absolute orientation of the
models using DTMs as control information was first proposed
by Ebner and Mueller (1986), and Ebner and Strunz (1988).
Afterwards, the functional model of DEM matching has been
formulated by Rosenholm and Torlegard (1988). This method
basically estimates the 3D similarity transformation parameters
between two DEM patches, minimizing the least square
differences along the Z axes. Several applications of DEM
matching have been reported (Karras and Petsa, 1993, Pilgrim,
1996, Mitchell and Chadwick, 1999, Xu and Li, 2000). Maas
(2000) successfully applied a similar method to register
airborne laser scanner strips, among which vertical and
horizontal discrepancies generally show up due to GPS/INS
accuracy problems. Another similar method has been presented
for registering surfaces acquired using different methods, in
particular, laser altimetry and photogrammetry (Postolov,
Krupnik, and McIntosh, 1999). Furthermore, techniques for
2.5D DEM surface matching have been developed, which
correspond mathematically with Least Squares Image Matching.
The DEM matching concept can only be applied to 2.5D
surfaces, whose analytic function is described in the explicit
form, i.e. z = f(x,y). Of course, this formulation has several
problems in the matching of solid (3D) surfaces.

Although the registration of 3D point clouds is a very active
research area in both Computer Vision and Photogrammetry,
there is not such a method that has a complete capability to the
following three properties: matching of multi-scale data sets,
matching of real 3D surfaces without any limitation, fitting the
physical reality of the problem statement as good as possible.
The proposed work completely meets these requirements.

The Least Squares Matching concept had been applied to many
different types of measurement and feature extraction problems
due to its high level of flexibility and its powerful mathematical
model: Adaptive Least Squares Image Matching (Gruen, 1984,
Gruen, 1985a), Geometrically Constrained Multiphoto
Matching (Gruen and Baltsavias, 1988), Image Edge Matching
(Gruen and Stallmann, 1991), Multiple Patch Matching with 2D
images (Gruen, 1985b), Multiple Cuboid (voxel) Matching with
3D images (Maas, 1994, Maas and Gruen, 1995), Globally
Enforced Least Squares Template Matching (Gruen and
Agouris, 1994), Least Squares B-spline Snakes (Gruen and Li,
1996). For a detailed survey the author refers to (Gruen, 1996).
If 3D point clouds derived by any device or method represent
an object surface, the problem should be defined as a surface
matching problem instead of the 3D point cloud matching. In
particular, we treat it as least squares matching of overlapping
3D surfaces, which are digitized/sampled point by point using a
laser scanner device, the photogrammetric method or other
surface measurement techniques. This definition allows us to
find a more general solution for the problem as well as to
establish a mathematical model in the context of LSM.

Our proposed method, Least Squares 3D Surface Matching
(LS3D), estimates the 3D transformation parameters between
two or more fully 3D surface patches, minimizing the Euclidean
distances between the surfaces by least squares. This
formulation gives the opportunity of matching arbitrarily
oriented 3D surface patches. An observation equation is written
for each surface element on the template surface patch, i.e. for
each sampled point. The geometric relationship between the
conjugate surface patches is defined as a 7-parameter 3D
similarity transformation. This parameter space can be extended

or reduced, as the situation demands it. The constant term of the
adjustment is given by the observation vector whose elements
are Euclidean distances between the template and search surface
elements. Since the functional model is non-linear, the solution
is iteratively approaching to a global minimum. The unknown
transformation parameters are treated as stochastic quantities
using proper weights. This extension of the mathematical model
gives control over the estimation parameters. The details of the
mathematical modeling of the proposed method, the
convergence behaviour, and the statistical analysis of the
theoretical precision of the estimated parameters are explained
in the following section. The experimental results based on
registration of close-range laser scanner and photogrammetric
point clouds are presented in the third section. The conclusions
are given in the last section.

2. LEAST SQUARES 3D SURFACE MATCHING

2.1 The Estimation Model

Assume that two different surfaces of the same object are
digitized/sampled point by point, at different times (temporally)
or from different viewpoints (spatially). f(x,y,z) and g(x,y,z) are
conjugate regions of the object in the left and right surfaces
respectively. The problem statement is finding the
correspondent part of the template surface patch f(x,y,z) on the
search surface g(x,y,z).

)z,y,x(g)z,y,x(f =   (1)

According to Equation (1) each surface element on the template
surface patch f(x,y,z) has an exact correspondent surface
element on the search surface patch g(x,y,z), if both of the
surface patches would be continuous surfaces. In order to model
the random errors, which come from the sensor, environmental
conditions or measurement method, a true error vector e(x,y,z)
has to be added.
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The matching is achieved by minimizing a goal function, which
measures the Euclidean distances between the template and the
search surface elements. Equation (2) is considered observation
equations, which functionally relate the observations f(x,y,z) to
the parameters of g(x,y,z). The final location is estimated with
respect to an initial position of g(x,y,z), the approximation of
the conjugate search surface patch g0(x,y,z).

To express the geometric relationship between the conjugate
surface patches, a 7-parameter 3D similarity transformation is
used. Depending on the deformation between the template and
the search surfaces, the geometric relationship could be defined
using any other type of 3D transformation methods, e.g. 12-
parameter affine, 24-parameter tri-linear, or 30-parameter
quadratic family of transformations.
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where rij = R(ω,φ,κ) are the elements of the orthogonal rotation
matrix, [tx  ty  tz]T is the translation vector, and m is the central
dilation.

In order to perform least squares estimation, Equation (2) must
be linearized by Taylor expansion, ignoring 2nd and higher order
terms.
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where pi ∈{tx , ty , tz , m, ω, φ, κ} is the i-th transformation
parameter in Equation (3). Differentiation of Equation (3) gives:
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κ+ϕ+ω++= dadadadmadtdz 33323130z

where  aij  are the coefficient terms. In the context of adjustment
of observation equations, each measurement is related with the
function whose variables are unknown parameters. This
function constitutes the functional model of the whole
mathematical model.  In the following  definition,  the terms
{gx , gy , gz} are 1st derivatives of this function, which is itself of
the search surface patch g(x,y,z). In other words these terms are
local surface gradients on the search surface. Using the
following notation,
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and substituting Equations (6), Equation (4) gives the following
equation:
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In matrix notation

P          xAe ,l−=−   (9)

where A is the design matrix,  xT = [dtx  dty  dtz  dm  dω  dφ  dκ]
is the parameter vector, and l = f(x,y,z)−g0(x,y,z) is the
observation vector that consists of the Euclidean distances
between the transformed point using current transformation
parameters and its coincident surface element on the other
surface. With the statistical expectation operator E{} and the
assumptions
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the system (9) and (10) is a Gauβ-Markov estimation model.

The unknown 3D similarity transformation parameters are
treated as stochastic quantities using proper weights. This
extension gives advantages of control over the estimating
parameters (Gruen, 1986). In the case of poor initial
approximations for unknowns or badly distributed 3D points
along the principal component axes of the surface, some of the
unknowns, especially the scale factor m, may converge to a
wrong solution, even if the scale factors between the surface
patches are same.
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The least squares solution of the joint system Equations (9) and
(11) gives the unbiased minimum variance estimation for the
parameters
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l−= xAv ˆ residual vector for surface observations (14)

bb ˆ l−= xIv residual vector for additional observations (15)

where ^ stands for the Least Squares (LS) Estimator. The
function values g(x,y,z) in Equation (2) are actually stochastic
quantities. This fact is neglected here to allow the use of the
Gauβ-Markov model and to avoid unnecessary complications,
as typically done in LSM (Gruen, 1985a).

Since the functional model is non-linear, the solution iteratively
approaches to a global minimum. In the first iteration the initial
approximations for the parameters must be provided:
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The iteration stops if each element of the alteration vector x̂  in
Equation (12) falls below a certain limit:
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The theoretical precision of the estimated parameters can be
evaluated by means of the covariance matrix
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In a least squares adjustment of indirect observations whose
functional model is non-linear, the 1st derivatives (2nd and
higher order terms are generally neglected in the Taylor
expansion) with respect to unknowns are very important terms,
since they direct the estimation towards a global minimum.  The
terms   {gx , gy , gz} are numeric derivatives of the unknown
surface patch g(x,y,z). Its calculation depends on the analytical
representation of the surface elements. As a first method, let us
represent the search surface elements as plane surface patches,
which are constituted by fitting a plane to 3 neighboring knot
points, in the implicit form
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where A, B, C, and D are parameters of the plane. Using the
mathematical definition of the derivation, the numeric 1st

derivation according to the x-axis is
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where the numerator term of the equation is simply the distance
between the plane and the off-plane point (x+∆x,y,z). Then
using the point-to-plane distance formula,
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is obtained. Similarly gy and gz are calculated numerically.
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Actually these numeric derivative values  {gx , gy , gz}  are x-y-z
components of the local surface normal vector at that point.
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In the case of representation of search surface elements as
parametric bi-linear surface patches, which are constituted by
fitting the bi-linear surface to 4 neighboring knot points Pi,j :
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where u,w ∈ [0,1]2 and G, Pi,j ∈ ℛ3. Again the numeric
derivative terms {gx , gy , gz} are calculated from components of
the local surface normal vector on the parametric bi-linear
surface patch:
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With this approach a better a posteriori sigma value could be
obtained due to a smoothing effect. In the case of insufficient
initial approximations, the numeric derivatives {gx , gy , gz} can
be calculated on the template surface patch f(x,y,z) instead of on
the search surface g(x,y,z) in order to speed-up the
convergence.

2.2 Precision and Reliability Issues

The standard deviations of the estimated transformation
parameters and the correlations between themselves may give
useful information concerning the stability of the system and
quality of the data content (Gruen, 1985a).
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As pointed out in (Maas, 2000), the estimated standard
deviations of the translation parameters are too optimistic due to
stochastic properties of the search surface.

Because of the high level redundancy of a typical data
arrangement, a certain amount of occlusions and/or outliers do
not have significant effect on the estimated parameters.
Baarda’s data-snooping method can be favourably used to
localize the occluded or gross erroneous measurements.

2.3 Computational Aspects

The computational complexity is of order O(N2), where N is the
number of employed points in the matching process. The actual
problem is to search the correspondent element of the template
surface on the search surface patch, whereas the adjustment part
is a small system, and can quickly be solved using back-
substitution followed by Cholesky decomposition. Searching
the correspondence is an algorithmic problem, and needs
professional software optimization techniques and programming
skills, which are not within the scope of this paper.

Since the method needs initial approximations of the unknowns
due to the non-linear functional model, one of the methods for
pre-alignment in the literature (Habib and Schenk, 1999,
Murino et al., 2001, Lucchese et al., 2002, Vanden Wyngaerd
and Van Gool, 2002) should be utilized.

Two 1st degree C0 continuous surface representations are
implemented, and explained in detail. In the case of multi-
resolution data sets, in which point densities are significantly
different on the template and search surface patches, higher
degree C1 continuous composite surface representations, e.g. bi-
cubic Hermit surface (Peters, 1974), should give better results,
of course increasing the computational expenses.

2.4 Convergence of Solution Vector

In a standard LS adjustment calculus in geodesy and
photogrammetry, the function of the unknowns is unique,
exactly known, and analytically continuous everywhere, e.g. the
collinearity equations in the bundle adjustment. Here the
function g(x,y,z) is discretized by using a definite sampling rate,
which leads to slow convergence, oscillations, even divergence
in some cases with respect to the standard adjustment. The
convergence behaviour of the proposed method basically
depends on the quality of the initial approximations and quality
of the data content, and it usually achieves the solution after 4th

or 5th iterations (Figure 1), as typically in LSM.

Figure 1: Typical examples for fast convergence (a) and slow
convergence (b). Note that scale factor is fixed to unity.

3. THE EXPERIMENTAL RESULTS

Two practical examples are given to show the capabilities of the
method. All experiments were carried out using own self-
developed C/C++ software that runs on Microsoft Windows®
OS. Processing times given in Table 1 were counted on such a
PC, whose configuration is Intel® P4 2.53 GHz CPU, 1 GB
RAM. The first example is the registration of three surface
patches, which were photogrammetrically measured 3D point
clouds of a human face from multi-images (Figure 2). For the
mathematical and implementation details of this surface
measurement method the author refers to (D’Apuzzo, 2002).

Left and right search surface patches (Figure 2-a and 2-c) were
matched to the centre template surface patch (Figure 2-b) by use
of LS3D. Since the data set already came in a common
coordinate system, the rotation angles (ω,φ,κ) of the search
surfaces were deteriorated by ~10g in the first iteration.
Numerical results of the matching of the left surface and the
right surface patches are given at parts I-L and I-R of Table 1
respectively. Relatively high standard deviations for the
estimated tx and φ (note that high physical correlation between x
and φ due to a conventional axes configuration) exhibit the
narrow overlapping area along the x-axis, nevertheless the
matching result is successful. The estimated σ0 values prove the
accuracy potential of the surface measurement method, given as
0.2 mm by D’Apuzzo (2002).
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Figure 2: (a) left-search surface, (b) centre-template surface, (c)
right-search surface, (d) obtained 3D point cloud after LS3D
surface matching, (e) shaded view of the final composite
surface.

The second experiment refers to the matching of two
overlapping 3D point clouds (Figure 3), which are a part of a
chapel in Wangen, Germany, and were scanned using IMAGER
5003 terrestrial laser scanner (Zoller+Fröhlich). Initial
approximations of the unknowns were provided by interactively
selecting 3 common points on the both surfaces before the
matching. Obtained results are given at part II of Table 1. The
estimated σ0 gives valuable information about the sensor noise
level and the accuracy limit of the scanner as >1.7 mm.

Table 1: Experimental results

s n i t d 0σ̂ tztytx ˆ/ˆ/ˆ σσσ κϕω σσσ ˆ/ˆ/ˆ
sec mm mm mm c

I-L P 2497 7 0.6 1.5 0.19 0.15/0.07/0.05 0.96/2.44/1.90
B 7 1.3 0.19 0.15/0.07/0.05 0.96/2.42/1.91

I-R P 3285 6 0.5 1.5 0.21 0.13/0.03/0.05 0.68/2.25/1.73
B 6 1.4 0.21 0.13/0.03/0.05 0.69/2.26/1.75

II P 13461 5 3.8 10 1.74 0.23/0.62/0.01 0.69/0.17/0.46
B 4 5.6 1.72 0.22/0.61/0.01 0.69/0.17/0.46

I-L: left face surface , I-R: right face surface, II: laser scanner data
s: surface representation, P: plane, B: bi-linear surface, n: number of
employed points, i: iterations, t: process time, d: ~ point spacing

The parametric bi-linear surface representation gives a slightly
better convergence rate and a better a posteriori sigma value
than the triangle plane representation, while increasing the
computational expenses. The standard deviation of the z-
component of the translation vector shows the excellent data
content in the depth direction, but the relative precision is
highly optimistic, which is ~1/1000 of the point spacing.

Since LS3D reveals the sensor noise level and accuracy
potential of any kind of surface measurement method or device,
it should be used for comparison and validation studies.

Figure 3: (a) top - template surface patch, (a) bottom - search
surface patch, (b) overlay of the shaded surfaces.

4. CONCLUSIONS

LSM is a fundamental measurement algorithm, and has been
applied to a great variety of data matching problems due to its
strong mathematical model. Two well-known ones are LS image
matching in 2D pixel space, and LS multiple cuboid matching
in 3D voxel space. The LS3D is bridging the conceptual gap
between the LS image matching and the LS cuboid matching.

This new 3D surface matching technique is a generalization of
the least squares 2D image matching concept and offers high
flexibility for any kind of 3D surface correspondence problem,
as well as monitoring capabilities for the analysis of the quality
of the final results by means of precision and reliability
criterions. Another powerful aspect of this proposed method is
its ability to handle multi-resolution, multi-temporal, multi-
scale, and multi-sensor data sets. The technique can be applied
to a great variety of data co-registration problems. In addition
time dependent (temporal) variations of the object surface can
be inspected, tracked, and localized using the statistical analysis
tools of the method.
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