
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
Institute of Geodesy and Photogrammetry

ETH-Hoenggerberg, Zuerich

GENERALIZED PROCRUSTES ANALYSIS AND ITS

APPLICATIONS IN PHOTOGRAMMETRY

Prepared for:
Praktikum in Photogrammetrie, Fernerkundung und GIS

Presented to:
Prof. Armin W. GRUEN

Prepared by:
M. Devrim AKCA

June, 2003

devrima
Text Box
http://www.photogrammetry.ethz.ch/general/persons/devrim_publ.html

http://www.photogrammetry.ethz.ch/general/persons/devrim_publ.html


Generalized Procrustes Analysis and its Applications in Photogrammetry                                       Devrim Akca

2

TABLE OF CONTENTS

1. INTRODUCTION 3

2. PROCRUSTES ANALYSIS: THEORY AND ALGORITHMS 4

     2.1.   Who is Procrustes? 4

     2.2.   Orthogonal Procrustes Analysis 4

     2.3.   Extended Orthogonal Procrustes Analysis (EOP) 6

     2.4.   Weighted Extended Orthogonal Procrustes Analysis (WEOP) 9

     2.5.   Generalized Orthogonal Procrustes Analysis (GP) 10

     2.6.   Theoretical Precision for GP 15

3. APPLICATIONS IN PHOTOGRAMMETRY 16

     3.1.   Example 1 17

     3.2.   Example 2 18

     3.3.   Example 3 19

     3.4.   Comparison of the two methods 20

4. CONCLUSIONS 21

REFERENCES 21



Generalized Procrustes Analysis and its Applications in Photogrammetry                                       Devrim Akca

3

1. INTRODUCTION

Some measurement systems and methods can produce directly 3D coordinates of the relevant
object with respect to a local coordinate system. Depending on the extension and shape
complexity of the object, it may require two or more viewpoints in order to cover the object
completely. These different local coordinate systems must be combined into a common
system. This geometric transformation process is known as registration. The fundamental
problem of the registration process is estimation of the transformation parameters.

In the context of traditional least-squares adjustment, the linearisation and initial
approximations of the unknowns in the case of 3 or more dimensional similarity
transformations are needed due to non-linearity of the functional model.

Procrustes analysis theory is a set of mathematical least-squares tools to directly estimate and
perform simultaneous similarity transformations among the model point coordinates matrices
up to their maximal agreement. It avoids the definition and solution of the classical normal
equation systems. No prior information is requested for the geometrical relationship existing
among the different model objects components. By this approach, the transformation
parameters are computed in a direct and efficient way based on a selected set of
corresponding point coordinates (Beinat and Crosilla, 2001).

The method was explained and named as Orthogonal Procrustes problem by Schoenemann
(1966) who is a scientist in the Quantitative Psychology area. In this publication,
Schoenemann gave the direct least-squares solution of the problem that is to transform a
given matrix A into a given matrix B by an orthogonal transformation matrix T in such a
way to minimize the sum of squares of the residual matrix E = AT – B.   The first
generalization to the Schoenemann (1966) orthogonal Procrustes problem was given by
Schoenemann and Carroll (1970) when a least squares method for fitting a given matrix A to
another given matrix B under choice of an unknown rotation, an unknown translation and an
unknown scale factor was presented. This method is often identified in statistics and
psychometry as Extended Orthogonal Procrustes problem. After Schoenemann (1966),
similar methods were proposed in computer vision and robotics area (Arun et al., 1987, and
Horn et al., 1988).

The solution of the Generalized Orthogonal Procrustes problem to a set of more than two
matrices was reported (Gower, 1975, Ten Berge, 1977). Further generalization in the
stochastic model is called Weighted Procrustes Analysis, which can be different weighting
across columns (Lissitz et al., 1976) or across rows (Koschat and Swayne, 1991) of a matrix
configuration. An approach that can differently weight the homologous points coordinates
was given (Goodall, 1991). A method that can take into account the stochastic properties of
the coordinate axes was given by Beinat and Crosilla (2002).

Implementation details and two different applications of Procrustes Analysis in Geodetic
Sciences were given by Crosilla and Beinat (2002, 2001): photogrammetric block adjustment
by independent models, and registration of laser scanner point clouds. The reader can also
find a detailed survey of the Procrustes analysis and its some possible applications in the
Geodetic Sciences in (Crosilla, 1999).

The report is organized as follows. In the second section, the mathematical background and
the algorithmic aspects of the Procrustes analysis is given. In the third section, two different
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applications of the Procrustes analysis in photogrammetry are presented. This section also
compares the Procrustes Analysis and the conventional Least-Squares solution with respect
to accuracy, computational cost, and operator handling. Discussion and conclusion are given
in the fourth section.

2. PROCRUSTES ANALYSIS: THEORY AND ALGORITHMS

2.1. Who is Procrustes?

2.2. Orthogonal Procrustes Analysis

Orthogonal Procrustes problem (Schoenemann, 1966) is the least squares solution of the
problem that is the transformation of a given matrix A into a given matrix B by an
orthogonal transformation matrix T in such a way to minimize the sum of squares of the
residual matrix E = AT - B.  Matrices A and B are  (p x k) dimensional, in which contain p
corresponding points in the k-dimensional space. A Least squares solution must satisfy the
following condition

{ } ( ) ( ){ } minBATBATtrEEtr TT =−−=            (1)

The problem also has another condition, which is the orthogonal transformation matrix,

ITTTT TT ==            (2)

Both of the conditions can be combined in a Lagrangean function,

{ } ( ){ }ITTLtrEEtrF TT −+=            (3)

The name of the method comes from Greek
Mythology (Figure 1). Procrustes, or "one
who stretches," (also known as Prokrustes or
Damastes) was a robber in the myth of
Theseus . He preyed on travelers along the
road to Athens. He offered his victims
hospitality on a magical bed that would fit
any guest. He then either stretched the
guests or cut off their limbs to make them fit
perfectly into the bed. Theseus, travelling to
Athens to claim his inheritance, encountered
the thief. The hero cut off the evil-doer's
head to make him fit into the bed in which
many "guests" had died (Greek Mythology
Reference).

Figure 1: Procrustes in Greek Mythology (Procrustes Accommodaties ob maat)



Generalized Procrustes Analysis and its Applications in Photogrammetry                                       Devrim Akca

5

( ) ( ){ } ( ){ }ITTLtrBATBATtrF TT −+−−=            (4)

{ } ( ){ }ITTLtrBBATBBATATATtrF TTTTTTT −++−−=            (5)

where L is a matrix of Lagrangean multipliers, and  tr{ } stands for trace of the matrix. The
derivation of this function with respect to unknown T matrix must be set to zero.

( ) 0LLTBA2ATA2
T
F TTT =++−=

∂
∂            (6)

where  (ATA) and (L+LT) are symmetric matrices. Let us multiply equation (6) on the left
side by TT,

0
2
LLBATATAT

T
TTTT =++−            (7)

( ) ( ) ( ) ( ) TT
TTTT

T

2
LLTAATBAT

2
LL











 +=−=+             (8)

Since  TT(ATA)T  is symmetric,  TT(ATB)  must also be symmetric. Remind that  (L+LT)  is
also symmetric. Therefore, the following condition must be satisfied.

( ) ( ) TBABAT TTTT =            (9)

Multiplying Equation (9) on the left side by  T,

( ) ( ) TBATBA TTT =          (10)

and on the right side by  TT

( ) ( )TTTTT BATBAT =          (11)

Finally, we have the following equation using Equations (10) and (11),

( )( ) ( ) ( ) TTTTTTT TBABATBABA =          (12)

Matrices  [(ATB)(ATB)T]  and  [(ATB)T(ATB)]  are symmetric. Both of them have same
eigenvalues.

( )( ) ( ) ( ) TTTTTTT TBABAsvdTBABAsvd  






=







          (13)

where  svd{ } stands for Singular Value Decomposition, namely Eckart-Young
Decomposition.  The result is,

TT
s

T
s TWWDTVVD  =          (14)
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This means that,

WTV =          (15)

Finally, we can solve the unknown orthogonal transformation matrix  T.

TWVT =          (16)

2.3. Extended Orthogonal Procrustes Analysis (EOP)

The first generalization to the Schoenemann (1966) orthogonal Procrustes problem was
given by Schoenemann and Carroll (1970) when a least squares method for fitting a given
matrix A to another given matrix B under choice of an unknown rotation  T, an unknown
translation  t , and an unknown scale factor  c  was presented. This method is often identified
in statistics and psychometry as Extended Orthogonal Procrustes problem. The functional
model is the following

BtjcATE T −+=          (17)

where  [ ]1...11T =j    is (1 x p) unit vector, matrices A and B  are (p x k) corresponding
point matrices as mentioned before,  T is (k x k) orthogonal rotation matrix, t is (k x 1)
translation vector, and c is scale factor. In order to obtain the least squares estimation of the
unknowns (T, t, c) let us write the Lagrangean function

{ } ( ){ }ITTLtrEEtrF TT −+=          (18)

( ) ( ) ( ){ }ITTLtrBtjcATBtjcATtrF TTTT −+






 −+−+=               (19)

where

{ } { } { } { } { } { }TTTTTTTTT2TT jtATtrc2tjBtr2ATBtrc2ttpATATtrcBBtrEEtr +−−++=

and  p = jTj  is a scalar, namely number of rows of the data matrices. The derivations of the
Lagrangean function with respect to unknowns must be set to zero in order to obtain a least
squares estimation,

( ) 0LLTjtcA2BcA2ATAc2
T
F TTTTT2 =+++−=
∂
∂          (20)

0jAcT2jB2tp2
t
F TTT =+−=
∂
∂          (21)

{ } { } { } 0tjATtr2ATBtr2ATATtrc2
c
F TTTTTT =+−=
∂
∂          (22)

The translation vector from Equation (21) is that
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( ) pjcATBt T−=          (23)

In Equation (20),  (ATA) and (L+LT) are symmetric matrices. Let us multiply Equation (20)
on the left side by  TT

( ) 0
2
LLtjAcTBAcTTAATc

T
TTTTTTT2 =+++−          (24)

( ) ( ) ( ) TT
TT2TTTTT

T

2
LLTAATctjAcTBAcT

2
LL











 +=−−=+           (25)

Since  TT(ATA)T  is symmetric, [ TTATB – cTTATjtT ]  must also be symmetric. Remind that
(L+LT)  is also symmetric.

.symmtjATBAT TTTTT =−          (26)

According to Equation (23), Equation (26) can be written as

( ) .symmcATB
p
jjATBAT
T

TTTT =−









−           (27)

.symmAT
p
jjAcTB

p
jjATBAT

T
TT

T
TTTT =










+










−           (28)

Since  AT
p
jjAT
T

TT










  is symmetric,  the rest of the equation must also be symmetric,

.symmB
p
jjATBAT
T

TTTT =









−           (29)

.symmB
p
jjBAT
T

TT =





















−           (30)

.symmB
p
jjIAT
T

TT =









−           (31)

Let us say,

B
p
jjIAS
T

T  









−=          (32)

where matrix  S  is  (k x k) dimensional. In order to satisfy Equation (31), the following
condition must be satisfied. Note that transpose of the matrix is equal to itself, if the matrix is
symmetric.
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TSST TT =          (33)

Multiplying Equation (33) on the left side by  T,

TTSS T=          (34)

and on the right side by  TT

TTT SSTT =          (35)

Finally, we have the following equation using Equations (34) and (35),

TTT STTSSS =          (36)

Matrices  [SST]  and  [STS]  are symmetric. Both of them have same eigenvalues.

{ } { } TTT TSSsvdTSSsvd  ⋅=          (37)

where  svd{ } stands for Singular Value Decomposition, namely Eckart-Young
Decomposition.  The result is,

TT
s

T
s TWWDTVVD  =          (38)

where matrices  V and W  are orthonormal eigenvector matrices, and  Ds  is the diagonal
eigenvalue matrix. According to Equation (38),

TWV =          (39)

Finally, we can solve the unknown orthogonal transformation matrix  T.

TVWT =          (40)

In the calculation phase, one should take into account the following equation. According to
(Schoenemann and Carroll, 1970)

{ } s
T

T
T DDVDWB

p
jjIAsvdSsvd ≠=























−=      ,                 (41)

In order to solve the scale factor  c, let us substitute Equation (23) in Equation (22)























−























−

=

  A
p
jjIA

 B 
p
jjIAT

c
T

T

T
TT

tr

tr

         (42)

Finally, translation vector  t  can be solved from Equation (23)

( ) pjcATBt T−=          (43)
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2.4. Weighted Extended Orthogonal Procrustes Analysis (WEOP)

WEOP can directly calculate the least-squares estimation of the similarity transformation
parameters between two differently weighted model point matrices. This aim is achieved
when the following conditions are satisfied (Goodall, 1991).

( ) ( ) mincctr K
T

P
TT =







 −+−+  WBtjATWBtjAT          (44)

IT TTT == TT (orthogonalitiy condition)          (45)

where matrices  A and B  are (p x k) model point matrices, which contain the coordinates of
p  points in  Rk  space. Matrices  WP  (p x p)  and  WK  (k x k) are optional weighting
matrices of the  p  points and  k  components, respectively. Model points matrix A is
transformed into best-fit of the model points matrix B, by the unknown transformation
parameters, namely orthogonal rotation matrix (k x k)  T, translation vector (k x 1) t, and
scale factor c. The vector  j  is (p x 1) unit vector.

At the first attempt, let us assume that  IW =K   , and let us re-arrange Equation (44) in order
to obtain a similar expression as in Equation (19). For the sake of this aim, matrix  WP  can
be decomposed into lower and upper triangle matrices by Cholesky Decomposition.

QQW T
P = (Cholesky Decomposition)          (46)

So that

( ) ( ) minBjtcATBjtcATtr TTTT =






 −+−+  I   QQ          (47)

( )( ){ } mintTctcTtr TTTTTTTT =−+−+  QB j QQA QBQj QA          (48)

Finally,

( ) ( ) mintTctTctr TTT =






 −+−+  QB j QQA QB j QQA          (49)

By substituting   Aw = Q.A  ,   Bw = Q.B  ,   and   jw = Q.j

( ) ( ) mintTctTctr w
T

ww
T

w
T

ww =






 −+−+  Bj A Bj A          (50)

Equation (50) is the same expression as in Equation (19). Therefore, this problem can be
solved by the same method as in Extended Orthogonal Procrustes (EOP) analysis.
Performing the Singular Value Decomposition of matrix product:

TT
w

w
T
w

T
wwT

w VDWB
jj
jj

IAsvd =




















−             (51)
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where  V  and  W  are orthonormal eigenvector matrices, and  D  is the diagonal eigenvalue
matrix. Note that the dimension  of  svd{ } part is (k x k). The unknowns can be found as
mentioned before.

TV WT =          (52)





















−





















−= w

w
T
w

T
wwT

ww
w

T
w

T
wwT

w
T trtr  A

jj
jj

IA  B 
jj
jj

IATc          (53)

( )
w

T
w

wT
ww jj

j
TcABt −=          (54)

An iterative solution method for the case of   IW ≠K    was given by Koschat and Swayne
(1991). Also, a direct solution method that can take into account the stochastic properties of
the coordinate axes in the case of Generalized Orthogonal Procrustes Analysis (GP) was
given by Beinat and Crosilla (2002). This method will be explained in the following section.

2.5. Generalized Orthogonal Procrustes Analysis (GP)

Generalized Procrustes Analysis is a well-known technique that provides least-squares
correspondence of more than two model points matrices (Gower, 1975, Ten Berge, 1977,
Goodall, 1991, Dryden and Mardia, 1998, Borg and Groenen, 1997). It satisfies the
following least squares objective function:

( ) ( )[ ] ( ) ( )[ ] mincccctr
m

1i

m

1ij

T
jjjj

T
iiii

TT
jjjj

T
iiii =













+−++−+∑ ∑
= +=

jtTAjtTAjtTAjtTA 
 

     (55)

where   A1 , A2 , … , Am   are  m  model points matrices, which contain the same set of  p
points  in  k  dimensional  m  different coordinate systems. According to Goodall (1991),
there is a matrix  Z , also named consensus matrix, in which contains the  true  coordinates
of the  p  points  defined in a mean and common coordinate system (Figure 2). The solution
of the problem can be thought as the search of the unknown optimal matrix Z.

T
iiiiii cˆ jtTAAEZ +==+  i = 1,2, …, m          (56)

( ) ( ){ }KP
2

i ,0N~vec QQ ΣE ⊗σ=          (57)

where  Ei  is the random error matrix in normal distribution,  Σ  is the covariance matrix,  QP
is the cofactor matrix of the  p  points,  QK  is the cofactor matrix of the  k  coordinates of
each point,  ⊗   stands for the Kronecker product, and  σ2  is the variance factor.

Let  IΣ 2σ=

Least squares estimation of unknown transformation parameters  Ti , ci , and  ti  (i=1,2,…,m)
must satisfy the following objective function, as mentioned before in Equation (55),
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minˆˆ
m

1ij

2
ji

m

1i
=−∑∑

+==
 AA          (58)

Let us define a matrix  C  that is  geometrical centroid of the transformed matrices, as
follows:

∑
=

=
m

1i
i

ˆ
m
1 AC          (59)

The following two objective functions

( ) ( )∑∑∑∑
+==+== 



 −−=−

m

1ij
ji

T
ji

m

1i

m

1ij

2
ji

m

1i

ˆˆˆˆtrˆˆ AAAA AA           60)

( ) ( )∑∑
== 



 −−=−

m

1i
i

T
i

m

1i

2
i

ˆˆtrmˆm CACA  CA          (61)

are equivalent (Kristof and Wingersky, 1971, Borg and Groenen, 1997). Therefore,
Generalized Orthogonal Procrustes problem can also be solved minimizing Equation (61)
instead of Equation (60). From a computational point of view, this solution method is
simpler than the other one. Note that both of the solutions are iterative and equivalent, but
two different ways.

In the following, only the solution method that imposes the minimum condition in Equation
(61) will be expresses in detailed. The other solution that imposes the minimum condition in
Equation (60) was proposed by Gower (1975), and improved by Ten Berge (1977).

mÂ

1Â

T1 c1 t1

A1 A2

Am

Z

T2 c2 t2

Tm cm tm

2Â

Figure 2: GP concept (Crosilla and Beinat, 2002)
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The solution of the GP problem can be achieved using the following minimum condition

( ) ( ) minˆˆtrˆ
m

1i
i

T
i

m

1i

2
i =





 −−=− ∑∑

==
CACA CA          (62)

in a iterative computation scheme of centroid  C  in a such a way:

Initialize:
• Define the initial centroid C

Iterate:
• Direct solution of similarity transformation parameters of each model

points matrix  Ai  with respect to the centroid  C  by means of
Weighted Extended Orthogonal Procrustes (WEOP) solution

• After the calculation of each matrix  iÂ   is carried out, iterative updating
of the centroid  C  according to Equation (59)

Until:
• Global convergence, i.e. stabilization of the centroid  C

The final solution for the centroid  C  shows the final coordinates of  p  points in the
maximal agreement with respect to least squares objective function. Unknown similarity
transformation parameters (Ti , ci , and  ti) can also be determined by means of WEOP
calculation of each model points matrix  Ai  to the centroid  C.

The centroid  C  corresponds the least squares estimation  Ẑ   of the true value  Z. The proof
of this definition was given by Crosilla and Beinat (2002).

∑
=

==
m

1i
i

ˆ
m
1ˆ A ZC          (63)

In the following parts of this section, different optional weighting strategies will be
expressed. For further details and proof of the statements, author refers Crosilla and Beinat
(2002), Beinat and Crosilla (2002).

Case 1:

Let us consider the following case,

( ) ( ){ } IQ      ,       QQ ΣE =⊗σ= KKP
2

i ,0N~vec          (64)

where  IQ ≠P   , but diagonal, i.e. each row of  iÂ   has different dispersion with respect to
the true value  Z.  But  QP  remains constant when varying  i=1,2,…,m.  In this case, centroid
C  is same as in Equation (59) or (63).
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Case 2:

Let us treat a more general scheme,

( ) ( ){ } IQ      ,       QQ ΣE =⊗σ= KiKiPi
2

ii ,0N~vec          (65)

where  IQ ≠Pi   , but diagonal, i.e. each row of  iÂ   has different dispersion with respect to
the true value  Z  and the dispersion varies for each model points matrix  i=1,2,…,m.  In this
case, the centroid  C  is defined as follow:

1
Pii

m

1i
ii

1m

1i
i

ˆ −

=

−

=
=




















= ∑∑ QP         ,        APPC          (66)

Also in this case, centroid  C  corresponds to the classical least squares estimation  Ẑ   of the
true value  Z.  Note that the imposed least squares objective function is

( ) ( ) minˆˆtr
m

1i
ii

T
i =





 −−∑

=
ZAPZA          (67)

Case 3:

In real applications (for example block adjustment by independent models), all of the  p
points could not be visible in all of the model points matrices  A1 , A2 , …, Am  . In order to
handle the missing point case, Commandeur (1991) proposed a method based on association
to every matrix  Ai  a diagonal binary (p x p) matrix  Mi  , in which the diagonal elements are
1 or 0 , according to existence or absence of the point in the  i-th  model (Figure 3). This
solution can be considered as zero weights for the missing points.























−−−
−−−

=
444
333
222
111

1 zyx
zyx
zyx
zyx
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−−−
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=
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444
333
222

2

zyx
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−−−
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333

3
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=

1
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1
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1
0

M
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00000
00000
00000
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Figure 3: Incomplete  Ai  (p x 3) model points matrices and resulting  Mi  (p x p) Boolean
diagonal matrices (adapted from Beinat and Crosilla, 2001).
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Least squares objective function and centroid  C  are as follows in the missing point case:

( )[ ] ( )[ ] mincctr
m

1i

T
iiiii

TT
iiii =







 −+−+∑

=
 CjtTA MCjtTA  

 
         (68)

or

( ) ( ) minˆˆtr
m

1i
ii

T
i =





 −−∑

=
CAMCA          (69)

where

( )











+










= ∑∑

=

−

=

m

1i

T
iiiii

1m

1i
i c jtTAMMC          (70)

or






















= ∑∑

=

−

=

m

1i
ii

1m

1i
i ÂMMC          (71)

In order to obtain a more general scheme, one should consider the combined
weighted/missing point solution. The weight matrix  Pi  and  the binary matrix  Mi  can be
combined in a product matrix, as follow:

1
Piiiiiii
−=== QP         ,        MPPMD          (72)

Note that  Di  is also diagonal. In this case, the corresponding least squares objective function
will be

( )[ ] ( )[ ] mincctr
m

1i

T
iiiiii

TT
iiii =







 −+−+∑

=
 CjtTA MPCjtTA  

 
         (73)

where the centroid  C  becomes

( )











+










= ∑∑

=

−

=

m

1i

T
iiiiii

1m

1i
ii c jtTAMPMPC          (74)

Case 4:

The explained stochastic approaches up to this section deal different weighting strategies
among the model points, not among the coordinate components. In order to account for the
different accuracy of the tie-point coordinate components, Beinat and Crosilla (2002)
proposed an anisotropic error condition.
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( ) ( ){ } IQ        IQ     ,       QQ ΣE ≠≠⊗σ= KiPiKiPi
2

ii and,0N~vec          (75)

where  QPi  and  QKi  are diagonal cofactor matrices. Then, weight matrices

1
Pii
−= QP          (76)

and

1
Kii
−= QK          (77)

The product matrix for the weighted/missing point solution is same as the previous
definition,

iiiii MPPMD ==          (78)

where  Mi  is the binary (Boolean) matrix. The corresponding least squares objective
function will be

( ) ( ) minˆˆtr
m

1i
iii

T
i =





 −−∑

=
K CADCA          (79)

where the centroid  C  is

( ) ( )











⊗










⊗= ∑∑

−

=

m

i
iii

1m

1i
ii

ˆvecvec ADKDKC          (80)

where centroid  C corresponds to the classical least squares estimation Ẑ  of the true value Z.
Note that   [ ]ii DK ⊗    and   ( )i

ˆvec A    matrices  are  (kp x kp) and (kp x 1) dimensional,
respectively. For further details and the proof of the definition, author refers Beinat and
Crosilla (2002).

2.6. Theoretical Precision for GP

Crosilla and Beinat (2002) gave the formulation of the a posteriori covariance matrix of the
coordinates of each point as follow:

[ ] ( ) [ ]( ) [ ]
j

k1i

m

1i

j
1k

TT
i

j
kk

ˆˆ
m
1

×
=

××
−−= ∑ CACAS          (81)

where  k  is the number of dimensions,  m  is the number of existence of the j-th point in the
all models, and matrix  ( ) [ ]

j
k1i

ˆ
×

−CA   is the k-dimensional row vector for the j-th point in the

i-th model points matrix. The off-diagonal elements of the  S  matrix show the algebraic
correlation among the coordinate axes for the  j-th point, not physical correlation.
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3. APPLICATIONS IN PHOTOGRAMMETRY

As mentioned before in Section (2.5), the first step of Generalized Orthogonal Procrustes
Analysis (GP) is definition of the initial centroid  C. One should define one of the models as
fixed, and sequentially link the others by means of WEOP algorithm. Instead of sequentially
registering pairs of single models, Beinat and Crosilla (2001) proposed the orientation of
each model with respect to the topological union of all the previously oriented models. This
process is shown schematically in Figure (4).

[ ] fixed12 AA ⇒

[ ]123
~ AAA ∪⇒

[ ]1234
~~ AAAA ∪∪⇒ …  etc.

Figure 4: Initial registration (adapted from Beinat and Crosilla, 2001)

The approximated shape of the whole object obtained in this way provides an initial value
for the centroid  C. If the problem include the datum definition, e.g. in the case of block
adjustment by independent models, a final WEOP is also needed to transform the whole
object into the datum using ground control points.

In fact Generalized Orthogonal Procrustes Analysis (GP) is a free solution, since the
consensus matrix  Z  is in any orientation-position-scale in the k-dimensional space. In other
words, it does not involve the datum-constraints, e.g. ground control points. One of the most
possible photogrammetric applications of the GP is block adjustment by independent models,
which needs datum definition.

An adaptation of GP method into block adjustment by independent models problem was
given by Crosilla and Beinat (2002).

At each iteration, all models  iÂ   of the block, one at a time, are rotated, translated and
scaled to locally fit the temporary centroid  C  by using the WEOP and the common tie
points existing between  iÂ   and  C. The centroid is computed from two sets of tie and
control point coordinates together, all in the ground coordinate system. The control points,
possibly with different weights, play the role of constraints in the centroid computation.
They produce the same effect as pseudo-observation equations of the control point
coordinates in the conventional solution of the block adjustment. During the adjustment, the
centroid is not constant, but changes at each iteration because the tie point coordinates are
constantly recomputed and updated, while the control point coordinates are kept fixed. As
soon as a model  iÂ   is rotated, translated and scaled and its new coordinates stored, these
changes are immediately applied and the centroid configuration is updated. The process ends
when the centroid configuration variations between two subsequent iterations are smaller
than a pre-defined threshold. This event means that the least squares fit among the models
has been obtained (Crosilla and Beinat, 2002).
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In the following parts of this section, 3 different examples will be given in order to compare
the Procrustes method with the conventional least-squares adjustment. All of the examples
were performed on a PC that has the following specifications: Windows 2000 Professional
OS, Intel Pentium III 450 Mhz CPU, and 128 MB RAM.

3.1. Example 1

At the first attempt, conventional least-squares adjustment for similarity transformation and
WEOP were compared according to their computational expense. The problem is the least-
squares estimation of the similarity transformation parameters between two model point
matrices, as mentioned before in Section (2.4).

A synthetic model points matrix  A, in which are 100 points in 3-dimensional space, and its
transformed counterpart  B  was generated. Additionally, the coordinate values of the matrix
A  were disturbed by the random error  e  that is in the following distribution,

{ }mm5,0N~e ±=σ=µ            (82)

The computation times were given in Table (1). As mentioned before, Weighted Extended
Orthogonal Procrustes (WEOP) solution is a direct solution as opposed to the conventional
least-squares solution. The initial approximations of the unknowns were calculated using a
closed-form solution proposed by Dewitt (1996), since the functional model of the
conventional least-squares solution for this problem is not linear.

Iterations Computation time (sec.)
Least-squares adjustment 3 0.09
WEOP -- 0.03

Table 1: Conventional least-squares solution versus WEOP.

Of course, same results for the unknown transformation parameters  T, c, t  were obtained in
both solutions, in spite of two different solution ways. In WEOP solution, the core of the
computation is Singular Value Decomposition of the  (k x k) matrix, in this example it is (3
x 3). The used solution strategy in conventional least-squares solution is well-known method,
i.e. normal matrix partitioning by means of groups of the unknown, Cholesky decomposition,
and back-substitution. Note that the coordinates of the control points were treated as
stochastic quantities with proper weights.

LL21L P     ;     xAtAv l−⋅+⋅=          (83)

CCC P     ;     xI                 v l−⋅=

where  t  and  x  are unknown vectors of absolute orientation parameters and object space
coordinates, respectively. Therefore, the dimension of the normal equations matrix in this
example was  [ (7 + pk) x (7 + pk) ],  namely (307 x 307).
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3.2. Example 2

In the second example, a real data set, which consisted 5 model points matrices obtained
from a close-range laser scanner device, was used. The data set includes totally 10 tie points
in the 3-dimensional space, also in unit of meter. The expected a priori precision of the
coordinate observations is  mm0 3±=σ   along the 3-coordinate axes. The aim is to combine
all models into a common coordinate system in order to obtain the whole object boundary.
Two different methods were employed in order to achieve the solution; block adjustment by
independent models as conventional least-squares solution, and/versus Generalized
Orthogonal Procrustes method (GP). Table (2) shows the result.

Iterations Computation
times (sec.)

 σ0 (mm.)

Block adjustment by
independent models

3 0.01 3.4

Generalized Orthogonal
Procrustes (GP)

6 0.01 2.2

Table 2: Block adjustment by independent models versus Generalized Orthogonal
Procrustes (GP).

In Table (2) σ0 value of GP method was calculated according to the deviations of the
transformed coordinates from the final centroid  C. In block adjustment by independent
models method, same solution strategy mentioned in Section (3.1) was employed. Three of
the tie points were involved as control points in order to define the datum using the same
functional model in Equation (83). In contrary, Generalized Orthogonal Procrustes (GP)
solution is completely free solution. In other word, it does not involve any object space
constraint. This circumstance is also the reason of slight difference between the two σ0
values.

One of the most important advantage of the GP method against to block adjustment by
independent models method is its drastically less memory requirement. Required basic
memory sizes for this example are given in the following part. Note that the variables are
double precision, e.g. 8 bytes.

For block adjustment by independent models method:

For N11 : m (u x u ) = 5 . (7 x 7) = 245   variables
For N12 : (m u) x (p k) = (5 .7) x (10 . 3) = 1050 variables
For N22 : p k = 10 . 3 = 30     variables
Totally  : = 10 600  Bytes

For Generalized Orthogonal Procrustes (GP) method:

For unknowns of each model : m u = 5 . 7 = 35 variables
For centroid  C : p k = 10 . 3 = 30 variables
Totally : = 520 Bytes
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where  N11 , N12 , and  N22  are the partitioned sub-parts of the normal equations matrix,  m
is number of the models,  p  is number of points,  k  is number of dimensions , and  u  is
number of unknown transformation parameters for a model.

3.3. Example 3

In the last example, a synthetic data set, which consisted 9 model points matrices, is used.
The data set includes totally 100 tie points, in which 30 of them are control points, in the 3-
dimensional space. The data set was slightly disturbed by the following random error  e:

{ }unitless002.0,0N~e    ±=σ=µ          (84)

Table (3) shows the calculation information of the two methods, i.e. block adjustment by
independent models as conventional least-squares solution, and/versus Generalized
Orthogonal Procrustes method (GP). In both methods, control points were employed as
datum-definitions. In GP method, the control points were treated as in the method, which
adapts the GP method to block adjustment by independent models (Crosilla and Beinat,
2002), as expressed in Section (3).

Iterations Computation
times (sec.)

σX
(unitless)

σY
(unitless)

σZ
(unitless)

Block adjustment by
independent models

5 1.032 0.0018 0.0018 0.0019

Generalized Orthogonal
Procrustes (GP)

35 1.953 0.0017 0.0020 0.0019

Table 3: Block adjustment by independent models versus Generalized Orthogonal
Procrustes (GP).

As mentioned before in Section (3.1), the most computationally expensive part of the
Procrustes method is Singular Value Decomposition of the  (k x k) matrix, in this example it
is (3 x 3). The used solution strategy in conventional least-squares solution is well-known
method, i.e. normal matrix partitioning by means of groups of the unknown, Cholesky
decomposition, and back-substitution. Note that the coordinates of the control points were
treated as stochastic quantities with proper weights.

In the case of datum-definition, very slow convergence behavior of the Generalized
Orthogonal Procrustes (GP) method compared to conventional block adjustment solution can
be shown from Table (3).
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3.4. Comparison of the two methods

• The Procrustes analysis is a linear least-squares solution to compute the similarity
transformation parameters among the  m  ( )2m ≥  model points matrices in k-
dimensional space. Since its functional model is linear, it does not need initial
approximations for the unknown similarity transformation parameters. But in the case of
conventional least-squares adjustment, the linearisation and initial approximations of the
unknowns in the case of 3 or more dimensional similarity transformations are needed due
to non-linearity of the functional model. In the literature, there are many closed-form
solutions to calculate the initial approximations for the unknown similarity
transformation parameters (Thompson, 1959, Schut 1960, Oswal, Balasubramanian,
1968, Dewitt, 1996).

• The Procrustes analysis does not has a restriction on the number of  k  dimensions in the
space of the data set. Its generic and flexible functional model can easily handle the  k
( )3k >   dimensional similarity transformation problems without any arrangement on the
mathematical model. In photogrammetry area, we are very familiar to  k  ( )3,2k =
dimensional similarity transformations. In the case of  3>k   dimensional similarity
transformation problems, the functional model of the conventional least squares
adjustment must be extended/rearranged according to the number of dimensions of the
data set.

• The Generalized Orthogonal Procrustes analysis (GP) is a free solution, in other words, it
does not involve the control information to define the datum, except the adaptation to
block adjustment by independent models (Crosilla and Beinat, 2002). This configuration
can also be achieved in the conventional least-squares adjustment by means of inner
constraints, or sometimes referred as free net adjustment.

• For the time being, no work has been reported on the most general stochastic model,
namely existence of correlation among the all measurements, for Procrustes analysis.
From the mathematical point of view, conventional least squares adjustment has very
powerful mathematical (functional + stochastic) model, which can handle many
physically real situations, e.g. unknowns as stochastic quantities, constraints among the
measurements and among the unknowns, correlated measurements, etc…

• In the Procrustes analysis, the most computationally expensive part of the calculation is
Singular Value Decomposition of the  (k x k) matrix, where  k  is the number of
dimensions of the data set. But it’s relatively slow convergence behavior makes its
computation speed equal with compared to conventional least-squares adjustment.

• From the software implementation point of view, the Procrustes analysis needs
drastically less memory requirement than the conventional least-squares adjustment, as
explained by a simple example in Section (3.2.).

• The Procrustes method does not has any reliability criterion in order to detect and
localize the blunders, although this feature is vital for the real applications, in which
measurements might include the blunders. The conventional least-squares adjustment has
many powerful tools in order to localize and eliminate the blunders, e.g. Data-Snooping
and Robust methods.
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4. CONCLUSIONS

The Procrustes analysis is a least-squares method to estimate the unknown similarity
transformation parameters among two or more than two model points matrices up to their
maximal agreement. Because the estimation model is linear, it does not require the initial
approximations of the unknowns. In geodetic sciences, we are very familiar to solve the

3,2=k   dimensional similarity transformations by means of conventional least-squares
adjustment. In fact, these two different methods offer two different ways to achieve the same
solution.

In this report, a survey on Procrustes analysis, its theory, algorithms, and related works has
been given. Also, its applications in photogrammetry has been addressed. The previous
section (3.4.) gives a comparison between the Procrustes analysis and the conventional least
squares adjustment.

The most important disadvantage of the Procrustes method is lack of reliability criterion in
order to detect and localize the blunders, which might be included by the data set. Without
such a tool, the results that produced by the Procrustes method can be wrong in the case of
existence of blunders in the data set.

ACKNOWLEDGEMENT

I would like to thank Fabio Remondino of the Institute of Geodesy and Photogrammetry,
ETH Zuerich, for giving me his Singular Value Decomposition program.

NOTE

In order to perform the experimental part of this semester Praktikum, two programs, i.e.
block adjustment by independent models and the generalized Procrustes analysis (GP), were
developed as ANSII C++ classes by the author, and are available in the internal Web area of
Chair of Photogrammetry and Remote Sensing.
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